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The authors introduce an algorithm for determining the steady-state probability distribution of an
ergodic system arbitrarily far from equilibrium. By enforcing equal sampling of different regions of
phase space, as in umbrella sampling simulations of systems at equilibrium, low probability regions
are explored to a much greater extent than in physically weighted simulations. The algorithm can be
used to accumulate joint statistics for an arbitrary number of order parameters for a system governed
by any stochastic dynamics. They demonstrate the efficiency of the algorithm by applying it to a
model of a genetic toggle switch which evolves irreversibly according to a continuous time Monte
Carlo procedure. © 2007 American Institute of Physics. �DOI: 10.1063/1.2784118�

I. INTRODUCTION

Many systems of significant fundamental and applied in-
terest are irreversible. These include, but are not limited to,
living systems, chemical reactors, systems with driven flows
of matter and energy, and light-driven systems. For theoret-
ical studies of such nonequilibrium processes, the steady-
state distribution is of central importance because it enables
calculation of static averages of observables for comparison
to experimental measurements. For example, flow cytometry
can be used to detect the single-cell protein levels in a large
population of cells efficiently.1,2 From these data, steady-
state distributions for protein numbers can be constructed
and compared with quantitative stochastic models for gene
and signaling regulatory networks. Often, the observed dis-
tributions are strongly asymmetric with long tails and mul-
tiple peaks. As such, it can be important to calculate higher
moments of model distributions,24 but doing so is rarely pos-
sible analytically without approximation and can become
prohibitive computationally due to the fact that low probabil-
ity states contribute significantly to such averages.

For systems at equilibrium, low probability states can be
explored efficiently in simulations with umbrella sampling
methods, in which biasing potentials that are functions of
one or more order parameters are used to enhance sampling
of selected regions of phase space.3–6 What complicates ex-
tending umbrella sampling to simulations of nonequilibrium
processes is that, by definition, they do not obey detailed
balance �microscopic reversibility�. As such, one must ac-
count for the fact that the steady-state probability of observ-
ing particular values of the order parameters can be deter-
mined by a balance of flows in phase space through different
possible transitions.

Here, we describe what we believe to be the first general
umbrella sampling algorithm for steady-state distributions of
nonequilibrium processes. Even sampling in a space of an
arbitrary number of order parameters is obtained by dis-
cretizing it and performing a separate simulation in each re-
sulting region. The lack of detailed balance necessitates

transfer of information about fluxes and probabilities be-
tween connected regions. The computational cost of the al-
gorithm scales linearly with the number of projected states in
the system regardless of their probabilities. The algorithm
can be employed with any stochastic integrator; here, we
show explicitly that the relative occupancies of different
states of a genetic toggle switch converge in orders of mag-
nitude fewer total steps in continuous time Monte Carlo
�MC� simulations which employ our algorithm than conven-
tional ones.7 Relations to other methods for enhanced sam-
pling of nonequilibrium processes are discussed.

II. METHODS

A. Overview

In this section, we describe the algorithm and its imple-
mentation. It is motivated by the observation that if an un-
constrained simulation of an ergodic nonequilibrium process
were run, the probability distribution in a region of interest
would depend only on the segments of the trajectory that
crossed it. So long as one knew the flux from outside the
region into it, one could weigh these segments correctly and
perform a simulation of that part of the phase space in iso-
lation. Below we refer to states in a region that are accessible
from outside it as “boundary states,” even though they need
not be physically at its boundary due to jumps in the space of
order parameters. By the same token, we refer to any two
regions connected by allowed transitions as “neighboring.”

Using these terms, the basic scheme is as follows. We
divide the space into boxes defined by order parameters and
run a conventional simulation in each box. Whenever the
system attempts to exit a box, we return it to a boundary state
selected with information obtained from a neighboring box.
The simulations in different boxes are otherwise indepen-
dent. The algorithm is thus reminiscent of equilibrium um-
brella sampling with an infinite square well potential, except
that, rather than simply rejecting transitions from the box, it
is necessary to reset the system such as to account correctly
for the flux into the box.

Below, we first prove that, given the flux into a box, the
steady-state probability distribution can be sampled by per-a�Electronic mail: dinner@uchicago.edu
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forming a simulation in that box alone. We then show how to
compute the fluxes from states outside the box to those in-
side it up to a constant weight factor which compensates for
the nonphysical density of walkers �replicas of the system� in
each box and, in turn, how to compute this weight factor. We
then summarize the algorithm and discuss technical details
for its implementation. Finally, a simplified algorithm for the
special case that one is interested in only a single order pa-
rameter is described.

B. Theory

For concreteness, we consider stochastic realizations of a
master equation obtained from a continuous time Monte
Carlo algorithm,7 although any other stochastic dynamics
can be treated so long as the system is ergodic. We label the
states inside the box of the current simulation by Roman
indices and those outside by Greek indices. In terms of these
two groups of states, the master equation is

�Pi

�t
= − aiPi + �

j

rijPj + �
�

ri�P�, �1�

where Pi is the probability of residing in state i, rij is the
transition probability to state i from state j, and ai=� jrji

+��r�i is the total escape rate from state i.
Defining P to be the vector with components Pi for

states i in the region of interest, one can rewrite Eq. �1�:

�P

�t
= WP + f . �2�

Above, W is the transition matrix with off-diagonal entries
Wij =rij and on-diagonal entries Wii=−ai; f is a flux vector
defined such that f i is the total flux into state i from outside
the region �i.e., f i=��f i�, where f i�=ri�P��. In a conven-
tional master equation, each column of the evolution opera-
tor sums to zero to ensure that probability is conserved. In
contrast, W in Eq. �2� contains the exit rates to states outside
the box �through the diagonal elements� but does not account
for the transfer of probability back into the box. The net flux
of probability out of the box that results from W is balanced
at steady state by the vector f, which introduces new walkers
to the box to represent the flux from outside. Thus, one can
view f in Eq. �2� as a set of sources for walkers that other-
wise evolve and exit the box according to the original dy-
namics encoded in W.

Equation �2� suggests that the density of walkers in each
box fluctuates, but, in fact, we fix it. A conventional simula-
tion is performed for each walker until it attempts to exit the
box, at which point it is returned to another state in the box
with a probability proportional to the flux into that state from
neighboring regions. That is, the probability of being re-
turned to state i is

Fi =
f i

�i f i
, �3�

where the sum is over all states inside the box �states inac-
cessible from outside have f i=0 and thus do not contribute�.
Since we are only interested in the steady-state solution to
Eq. �2� given by P=−W−1f up to a constant normalization

factor, the fluxes can be scaled arbitrarily. Thus, as long as
we return walkers to boundary states chosen with the proper
ratios of fluxes, this scheme is equivalent to the source pic-
ture above. It is preferable since it is simple to implement
and allows one to control the degree to which each region is
sampled through the specification of the number of walkers.

The above analysis can be extended immediately to the
case in which one is interested in a projection of the steady-
state probability distribution onto a subset of variables. To do
so, the flux vector must be broken into two parts: the flux
into regions of phase space consistent with the values of the
order parameters of interest and the distribution of that flux
to states within that region that differ only with regard to the
remaining degrees of freedom in the system. The simulation
procedure is essentially the same as above, except that i in
Eq. �3� labels a set of order parameter values rather than a
single state. Once the monitored variables are chosen accord-
ing to the fluxes, the remaining degrees of freedom are cho-
sen from their joint distribution at that state. In practice the
latter step is accomplished by storing configurations repre-
sentative of the flux distribution at each set of order param-
eter values and randomly picking from this list upon return
to that projected state.

C. Computing fluxes

We have shown that a separate simulation can be per-
formed for each box in the space of order parameters if the
fluxes into its states are known. The array of boxes covering
the space defines a lattice. To determine the fluxes, we intro-
duce a second such lattice shifted such that the interfaces
between boxes on one lattice run through the middle of
boxes on the other �Fig. 1�. The two lattices �indexed as 1
and 2� are otherwise the same, and simulations are performed

FIG. 1. Schematic of the algorithm. We show one box �labeled B� on lattice
2 �solid lines� and parts of the overlapping boxes on lattice 1 �dashed lines�.
The wiggly line represents one trajectory in B. It begins at a boundary point
chosen using the fluxes into B �filled circle� and is generated using the
integrator that defines the dynamics. When the trajectory transitions from
state � to state i, it crosses a boundary on lattice 1; the flux counter Ni�

�2� is
incremented, and the configuration upon entry to i is stored. These quantities
will be used to choose boundary points and entry configurations for the
simulation in box b�1��i�. Finally the trajectory leads to an attempt to exit the
box �open circle�; the weight of B is decreased, and the weight of B� is
increased. Then, the configuration is reset to a boundary point in box B and
the simulation is continued.

154112-2 Warmflash, Bhimalapuram, and Dinner J. Chem. Phys. 127, 154112 �2007�
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on each as described above. We explicitly describe the trans-
fer of information in terms of that from lattice 2 to lattice 1,
but we simultaneously execute the operations obtained by
swapping the lattice indices.

During the course of a simulation on lattice 2, we record
the number of crossings of each lattice 1 boundary and the
configurations that result from such events. Consider a pro-
jected state i which is in a particular box on lattice 1. Define
the indicator function b�x��i� for x=1,2 such that it returns
the index of the box on lattice x in which state i resides. Then
the flux from a state � outside of b�1��i� into state i is com-
puted from a simulation on lattice 2 according to

f i�
�1� =

Ni�
�2�wb�2����

�2�

Tb�2����
�2� , �4�

where Ni�
�x� is the number of crossings from state � into state

i recorded by the simulation on lattice x, TB
�x� is the amount of

time elapsed in the simulation run in box B on lattice x, and
wB

�x� is a weight factor associated with box B on lattice x.
This last parameter compensates for the restriction on the
density of walkers in each box. Without the weight factors,
fluxes out of low probability boxes would be inflated relative
to those out of high probability boxes.

The flux into state i �f i� is obtained by summing Eq. �4�
over all �, as stated above. Thus, given the weight factors,
the fluxes can be computed and the states chosen as de-
scribed above. In addition, every time a boundary on lattice 1
is crossed in the simulation on lattice 2, the configuration is
stored for use in setting the degrees of freedom other than the
order parameter upon returning walkers to their boxes in the
simulations on lattice 1.

D. Computing the box weights

To determine a means for evaluating the weight factors,
it is again worth considering an unconstrained simulation.
Walkers would transition from one region to another, and,
once a steady state was reached, on average there would be
many in the high probability parts of phase space and few in
the low probability parts. In our algorithm, each walker con-
strained to a box represents this average occupancy, and we
thus transfer portions of the weight factors for each boundary
crossing. Specifically, whenever a walker attempts to leave
its box �labeled B� to go to a neighboring one �B��, the con-
figuration is reset as detailed above and a transfer of weight
is made from B to B�,

− �wB
�x� = �wB�

�x� = swB
�x�T*/TB

�x�, �5�

where � denotes an additive change and T* is a reference
time which prevents the numerical value of the right hand
side from decreasing as the simulation time increases. In
practice, T* can be chosen to be the elapsed time in any box
as long as the choice of reference box is fixed throughout the
simulation. The factor wB

�x� reflects the fact that the number of
boundary crossings is linearly proportional to the number of
walkers in a region. By the same token, longer simulations
have more opportunity for boundary crossings, so we divide
by TB

�x� to allow for differences in the physical times elapsed

in B and B�. Finally, s is an arbitrary parameter that enables
one to tune how much weight is transferred for each bound-
ary crossing. Higher values of s lead to faster redistribution
but also larger fluctuations in the instantaneous values of the
weight factors.

E. Summary

To review, the algorithm proceeds operationally as fol-
lows. A separate simulation is carried out in each box, during
which boundary crossings and configurations are recorded
for use by simulations in overlapping boxes on the other
lattice. Whenever a walker tries to exit its box, it is returned
to a boundary point chosen according to Eq. �3� with the
fluxes computed from the simulation on the other lattice ac-
cording to Eq. �4�, and the configuration is reset to one from
the list of attempted entries. Additionally, a portion of the
weight of the box containing the walker is shifted to the box
to which it would have transitioned in an unconstrained
simulation according to Eq. �5�. At the end of the simulation,
the steady-state probability of state i as calculated from the
simulation on lattice x is given by

Pi
�x� =

ti
�x�wb�x��i�

�x�

Tb�x��i�
�x� N

, �6�

where ti
�x� is the amount of time spent in projected state i and

N is a normalization factor, computed from the requirement
that �iPi

�x�=1. In order words, each walker visits the states
within its box with the correct relative likelihoods, and these
are then uniformly scaled by the normalized weight of the
box. The probabilities computed from the simulations on the
two lattices can be averaged. The overall computational cost
of the algorithm scales linearly with the number of boxes.

F. Practical details

Nonequilibrium processes can be simulated using a va-
riety of methods.6,8 Any stochastic integrator can be em-
ployed for the simulations that take walkers from one bound-
ary crossing to another so long as it reproduces the desired
dynamics and is ergodic. Although we illustrate the algo-
rithm with a continuous time Monte Carlo procedure for ob-
taining stochastic realizations of a dynamics defined by a
master equation,7 Monte Carlo or molecular dynamics inte-
grators with discrete time steps can also be used. It is worth
noting that if a continuous time algorithm is used it is unnec-
essary to draw a separate random number for the time incre-
ment since only steady-state properties are desired. The time
for exit from state i can simply be set to �ti=1/ai.

For order parameters with finite ranges, the system can
simply be divided into boxes as described above. For order
parameters with infinite ranges, it is clear that it is impossible
to tile the entire space with boxes. Truncation error can be
avoided by choosing the outer boxes of the simulation to be
infinite in some directions. The sizes of the boxes in the
interior of the space of order parameters should be chosen to
effectively sample all the states in each box and thus should
be smaller in regions in which the probability changes rap-
idly. For this reason, the computational cost of the algorithm
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can increase somewhat faster than the volume of the pro-
jected phase space of interest. Nonetheless, this scaling com-
pares favorably with that of a conventional simulation in
which the computational cost of sampling projected states is
inversely proportional to their probabilities. How to tile the
space is discussed further in conjunction with the example.

At the beginning of a simulation, no data are available to
use in choosing boundary points. Walkers that attempt to
leave their box can be returned either to a random projected
state inside the box or simply prohibited from leaving with-
out a change in configuration until some information about
the fluxes and stored configurations are accumulated. Here
we adopt the latter strategy, although for systems with
weakly stochastic dynamics it is important to employ the
former to avoid simulating the same paths repeatedly. Ini-
tially, the sampling is not very accurate because the boundary
statistics as well as the weight factors are not representative
of the steady-state distribution. Convergence is significantly
improved if both the fluxes �f i

�x�� and the accumulated prob-
abilities �ti

�x�� are periodically reinitialized. Because the
former are necessary to continue the simulation, we employ
an iterative procedure. We accumulate boundary crossing
statistics over a fixed number of simulation steps �an itera-
tion� and, in the following iteration, use these statistics in
choosing the boundary states according to Eq. �4�. Conver-
gence was also found to be accelerated by averaging the
instantaneous values of the weights which fluctuate accord-
ing to Eq. �5� over a fixed number of Monte Carlo �MC�
steps before employing them in the flux computation in Eq.
�4�. We set the number of steps for this averaging equal to
the number of steps in one of the iterations for computing
fluxes discussed above, although these two intervals need not
be the same.

In practice, the simulation is performed as follows. Ini-
tially all weights are set equal and one iteration is carried out
in which walkers are prevented from exiting the box but no
boundary states are chosen. For the next iteration, the bound-
ary statistics, averaged weights, and stored configurations re-
corded during the first iteration are used to execute the algo-
rithm as described in detail above. At the end of each
successive iteration, these quantities are once again updated,
and the simulation is continued. After each iteration, the
times spent in each projected state during that iteration,
along with the weight values, are used to compute the
steady-state probabilities according to Eq. �6�. Either the
length of the iterations is increased or the results of many
iterations are averaged until the desired accuracy in the prob-
abilities is achieved.

G. One-dimensional algorithm

If the steady-state distribution is only desired as a func-
tion of one order parameter and the interfaces between boxes
partition the space such that a walker in an unconstrained
simulation would enter each box at the projected state that it
exited, considerable simplification of the algorithm is pos-
sible. When a walker attempts to exit a box, the system is
kept in the same projected state, and the remaining degrees
of freedom are reset according to their joint distribution for

walkers entering that boundary. This information can be ob-
tained from the neighboring boxes on the same lattice, which
obviates the need for the other lattice. In analogy to the gen-
eral algorithm, whenever the system in box B attempts to
transition to box B�, the configuration that it would have
taken upon entry into B� is stored. Because the weight fac-
tors are still needed to compute the steady-state probability
distribution according to Eq. �6� at the end of the simulation,
they are adjusted as in the full algorithm.

It might seem that such a single-lattice scheme could be
used for obtaining the needed fluxes and configurations for
sampling spaces of more than one order parameter as well.
However, this is not the case due to the need to choose the
projected state to which the system is returned upon at-
tempted exit. Suppose, for example, that the weight of a box
�B� fluctuates upward. By Eqs. �3� and �4�, walkers in neigh-
boring boxes will then be reset to boundary states accessible
from B more often. However, if transitions from those states
to ones in B are allowed, with some probability, the reset
walkers will immediately attempt to enter B and increase its
weight further according to Eq. �5�. This positive feedback
loop causes the single-lattice scheme to be unstable in simu-
lations to obtain the steady-state probability distribution as a
function of multiple variables. The use of two lattices en-
ables boundary states on one lattice to be chosen using the
fluxes from the other lattice, which breaks the feedback loop
and enables convergence.

III. EXAMPLE

In this section, we demonstrate the efficiency of the al-
gorithm for calculating steady-state properties of a model of
a genetic toggle switch.9,10 The model is defined by the re-
actions specified in Table I. Two proteins, A and B, can each
homodimerize and then bind to an operon �O�. The operon
can only bind one dimer at a time. When a dimer of A �B� is
bound to the operon, it represses transcription of the gene for
B �A�; there is no concomitant effect on the expression of A
�B�. As a result of these dynamics, the system has two stable
states: one with abundant A and scarce B and the opposite
situation. Switching between the two stable states is rare �ap-
proximately six orders of magnitude less frequent than each
elementary reaction9�.

Despite its apparent simplicity, this system provides a
challenging test for our method for a number of reasons. The

TABLE I. Reactions for the genetic toggle switch. The rate constants for the
forward and backward reactions are kf and kb; “...” indicates that there is no
backward reaction; � denotes degradation. The parameters for the dimer-
ization reactions are a factor of 2 larger than those reported by Allen et al.
�Ref. 9� because otherwise it was not possible to reproduce their results
when correctly accounting for the indistinguishability of the reactants
�Ref. 7�.

A reactions B reactions kf kb

A+A�A2 B+B�B2 10 5
O+A2�OA2 O+B2�OB2 5 1
O→O+A O→O+B 1 ¯

OA2→OA2+A OB2→OB2+B 1 ¯

A→� B→� 0.25 ¯
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bistability not only makes convergence of the relative popu-
lation of the stable states slow because there are few events
connecting them but leads to a hysteresis in which the flow
between stable states takes a different path through phase
space in each direction.9 As a result of the latter feature, the
system enters and exits many of the boxes through different
projected states, which requires that the boundary states be
weighted properly when walkers are reset. We determine the
steady-state probability distribution as a function of the total
numbers of A and B �Nx=nx+2nx2

+2nOx2
, where nx is the

population of species x for x=A,B�. It is thus necessary to
also take into account the joint distribution for the state of
the operon and the fractions of A and B in dimers when
choosing boundary states for returning walkers.

In calculating the probability distribution, each discrete
�NA,NB� pair was considered a separate projected state; for
the umbrella sampling, we tiled a space of 80�80 with 4
�4 boxes for a total of 400 boxes on each lattice �on one
lattice, these were shifted by two states in each direction�.
The boxes on the outer edges are infinite in that the order
parameters are allowed to increase to arbitrarily large values
to avoid truncation errors. Within each box, walkers evolved
according to the Gillespie algorithm.7 Initially, all the boxes
were given equal weights. As mentioned above, the fluxes
�Eq. �4�� and changes to the weights �Eq. �5� with s=10−2�
were accumulated over a fixed number of executed reactions
�an iteration� and then the values actually used to reset walk-
ers were updated at the end of each such interval; a list of the
100 most recent configurations from attempted transitions
was maintained for each boundary state. The first iteration
was 104 steps per box; it was followed by 10 iterations of 105

steps per box and then iterations of 106 steps per box until a
total of 5�107 steps was performed for each walker. After
the first 107 steps per box, the probability distribution was
calculated using Eq. �6� after each iteration and these results
were averaged at the end of the simulation.

For comparison, a conventional simulation with the
same integrator7 was run for 4�1010 steps, the total number
employed in the umbrella sampling simulation �we estimate
the overhead associated with the algorithm to be less than
10% of the computational time�. The results are shown in
Fig. 2�a�. The error in the conventional simulation can be
estimated by noting that symmetry requires the two peaks in
the probability distribution to have equal heights. In the re-
gion where both simulations have good statistics, the results
from the two methods agree to within this error. However,
the conventional simulation only samples regions in which
the probability is greater than about 10−9 compared with a
maximum probability value of 2.2�10−2. Our method accu-
rately samples the space over the entire region of interest,
regardless of the probability of each projected state. The out-
ermost contour in Fig. 2�a� marks a probability of 10−35.

We also computed the probability distribution in one
projected dimension along the order parameter �=NA−NB.
Each projected state corresponded to an integral value of �
and the region between �=−120 and �=120 was tiled with
boxes of width four states. The scale factor for Eq. �5� was
s=10−1, and 100 configurations were stored for each bound-
ary state to reset walkers that attempted to leave their boxes.

Data are presented for the full two-lattice algorithm because
simulations with the simplified one-lattice algorithm ap-
peared to become trapped in some trials. Excellent agree-
ment with a conventional simulation of the same length is
obtained in the region of high probability and the umbrella
sampling algorithm accurately samples the low probability
regions as well �Fig. 2�b��. We also examined the case in
which the switch paramters were not symmetic. In particular,

FIG. 2. �Color online� �A� Steady-state probability distributions for the
toggle switch �Table I� computed with a conventional simulation �dashed
lines� and umbrella sampling �solid lines�. Contours are logarithmically
spaced by factors of 10 with the innermost and outermost contours corre-
sponding to probabilities of 10−3 and 10−35, respectively. Results from the
umbrella sampling are averaged over the two lattices. �B� Probability distri-
bution along the variable �=NA−NB computed with a conventional simula-
tion �dashed line� and umbrella sampling algorithm �solid line�. �C� Same as
�B� except with the degradation rate for B increased by a factor of 2.
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we increased the degradation rate for B by a factor of 2. The
results in the high probability regions are again in agreement
with the conventional simulation, and the umbrella sampling
samples regions of arbitrarily low probability �Fig. 2�c��.

To compare the efficiency of the umbrella sampling al-
gorithm with a conventional simulation, we examined the
convergence of the relative occupancy of the two stable
states. By symmetry the states should be occupied to the
same extent. The results for typical runs of the conventional
and umbrella sampling simulations are shown in Fig. 3�a�.
The sudden jumps in the conventional simulation curve re-
flect switching events; their rarity accounts for the slow con-
vergence of the conventional simulation. The umbrella sam-
pling simulation does not suffer from this problem because it
enforces significant sampling at ��0. To quantify the rates
of convergence, we examined the average error as a function
of MC step for 20 simulations for each method �Fig. 3�b��.
After a total of 109 MC steps in each simulation, the ratio
computed from the umbrella sampling simulations was
1.00±0.03 �compared with an exact answer of 1 from sym-
metry�, while that computed from the conventional simula-
tion was 1.42±0.88 �the reported uncertainties are standard
deviations over the 20 simulations�. The conventional simu-
lation failed to achieve the former level of accuracy within

1011 MC steps, reaching only 1.03±0.09. Thus the umbrella
sampling converges to a given degree of accuracy in two
orders of magnitude fewer MC steps than a conventional
simulation for this example.

For this example, we obtained the best results when the
space of order parameters was discretized in a manner that
reflects the symmetry of the system. Otherwise, some frac-
tion of trials were observed to become trapped, even though
simulations reaching the correct steady-state probability dis-
tribution were stable. Such situations could be detected in a
case in which the exact solution was not known by varying
the positions of the boundaries, and, indeed, averaging over
different boundary choices would be expected to yield the
correct steady-state distribution. Moreover, these difficulties
appear to be specific to systems with a high degree of sym-
metry since the same switch with asymmetric parameters
converges within error to the distribution sampled by the
conventional simulation even when the space was tiled sym-
metrically around �=0 �Fig. 2�c��. If the parameters were
selected to make switching less frequent, the conventional
simulation would converge more slowly, while the umbrella
sampling simulation would remain essentially the same be-
cause its computational cost scales with the number of
boxes, not inversely with the probabilities of the projected
states. The umbrella sampling algorithm thus makes possible
the computation of steady-state properties that would other-
wise be intractable.

IV. DISCUSSION

We have introduced an algorithm for determining the
steady-state distribution of a system arbitrarily far from equi-
librium. The phase space is discretized, and equal sampling
in different regions is enforced by restricting walkers from
leaving their regions. The method is thus analogous to um-
brella sampling with an infinite square well bias potential,
except that information about fluxes between neighboring
regions must be used to overcome the lack of detailed bal-
ance. The algorithm can be employed with essentially any
stochastic integrator, and no assumptions are made with re-
gard to the extent of memory in the projected dynamics or
the form of the steady-state distribution. The computational
cost scales linearly with the number of walkers. We thus
believe that the algorithm will yield significant computa-
tional savings over a conventional simulation in any situation
in which low probability states must be sampled with accu-
racy, including ones in which they are not of interest in them-
selves but mediate transitions between high probability
states.

Formally, we showed that, given the fluxes into a region,
the steady-state distribution can be sampled by running a
simulation in that region in isolation �Eq. �2��. Walkers that
attempt to exit a box are returned according to fluxes com-
puted from boundary crossing statistics weighted by the den-
sity of walkers that would be in the originating box if an
unconstrained simulation with many walkers were run. The
algorithm is self-consistent: given the correct boundary sta-
tistics and weight factors, the steady-state distribution will be
sampled properly, and, given the actual steady-state distribu-

FIG. 3. �Color online� Convergence of the umbrella sampling �solid line�
and conventional simulation �dashed line� for the ratio of the occupancy of
the two stable states �P��=−40� / P��=40��. �A� Representative simula-
tions. �B� Average error ���P��=−40� / P��=40�−1 � 	� over 20 independent
simulations for each method.
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tion, the boundary statistics and weight factors will be com-
puted correctly. Although we have not proven that the simu-
lation will converge starting from incorrect weight factors,
we have found this to be the case for the genetic toggle
switch described, which we believe to be a demanding test
for the reasons outlined in the previous section.

It is important to appreciate the similarities and differ-
ences of our algorithm to the handful of others for enhanced
sampling of nonequilibrium processes. In our algorithm, one
can view an attempt by a walker to leave its box as a tran-
sition to an absorbing state followed by initiation of a new
trajectory according to the flux into the box. This aspect of
the algorithm is very similar to a procedure introduced by de
Oliveira and Dickman11 for study of a quasistationary state,
in which a system with an absorbing state takes infinitely
long to relax to it at criticality in the thermodynamic limit.
Simulations which accessed the absorbing state due to finite
size effects were reset to previously sampled configurations;
doing so led to about a tenfold increase in efficiency. In
principle, the two algorithms could be combined to improve
the sampling of the quasistationary distribution: that of de
Oliveira and Dickman would be used to reset the system
following transition to the true absorbing state and ours
would be used to ensure even sampling of order parameters
for characterizing the quasistationary state. In this way, our
algorithm could be used to study a class of nonequilibrium
processes that are not actually ergodic.

The discussion above highlights the fact that our algo-
rithm is a form of path sampling12,13 in which one harvests
segments of trajectories that cross a region of phase space.
Previous path sampling studies focused on transitions be-
tween two attactors. In particular, an algorithm based on per-
turbing the sequence of random variables employed in a
Langevin simulation of a nonequilibrium process was intro-
duced by Crooks and Chandler.14 Subsequently, a more gen-
eral algorithm, forward flux sampling �FFS�,9,10 was intro-
duced to enable the efficient calculation of rates for a
nonequilibrium process. The space is divided into regions,
which is similar to the discretization of phase space in our
algorithm except that, in FFS, the interfaces between regions
must be nonintersecting. This stipulation enables the system
to be ratcheted from one attractor to another. Specifically, in
each stage of a FFS simulation, trajectories are initiated from
an interface and only those that move forward towards the
second attractor prior to returning to the first are kept and
used as the starting points for the next stage. This procedure
correctly samples the ensemble of transition paths, not the
steady-state probability distribution, and thus it is fundamen-
tally different from that introduced here. In this regard, it is
worth noting that Bandrivskyy et al.15 presented a ratchet-
like algorithm for sampling the steady-state probability dis-
tribution of a two-dimensional system, but determining the
distribution for different regions sequentially requires that
those explored later do not influence those explored earlier,
which is in general not the case.

In reversible systems, path sampling simulations can be
used to obtain transition rates and free energies
simultaneously.16 Given that our algorithm samples segments
of actual trajectories, it is of interest to consider how our

method could be extended to obtain transition rates for non-
equilibrium processes. Of course, the umbrella sampling al-
gorithm could be used as part of a procedure analogous to
the Bennett-Chandler approach.6,17,18 During the umbrella
sampling simulation, configurations in the transition region
and the stable states from which the trajectories that gener-
ated them came could be stored. Given this information, the
flux of trajectories leading from the reactant to the transition
region could be computed, and structures from those trajec-
tories could be used to initiate unconstrained simulations to
obtain the transmission coefficient for reaching the product
region. Alternatively, milestoning19–21 could be used in con-
junction with our algorithm to characterize the time evolu-
tion of the probability distribution of the order parameters
and properties that depend on it. In milestoning, information
about the kinetics of transitions between coarse-grained
states is accumulated in short simulations and this informa-
tion is then combined through a non-Markovian hopping
model. Since the local dynamics in our algorithm reproduce
the dynamics of the unconstrained system, such a hybrid
method would not rely on equilibrium assumptions or a pri-
ori knowledge of the distributions of fluxes through the
boundaries of the coarse-grained states, in contrast to pub-
lished versions of milestoning;19–21 it thus would be exact up
to approximations associated with the loss in resolution upon
projection to coarse-grained states.

It is worth noting that it is also straightforward to imple-
ment a single-step algorithm. The last stable state visited by
each trajectory is stored and used to compute the probability
that a trajectory that leaves one stable state enters the other
without first returning. The flux out of each stable state can
be easily computed from the simulation in the box containing
that stable state. Unfortunately, this algorithm is inefficient in
practice. To see that this is the case, consider the transition
from the left to the right stable state in Fig. 2�b�. The vast
majority of paths entering the right stable state originate in
that stable state itself and do not pass through the transition
region near �=0. Because our algorithm samples paths with
their proper weights in the steady-state distribution, not only
the ensemble of transition paths �as in FFS �Refs. 9 and 10��,
rates converge slowly despite the fact that the region near
�=0 is populated at all times during the simulation. The
design of an algorithm for transition rates that, like ours,
allowed one to constrain sampling with intersecting inter-
faces is worth further consideration as it would provide a
significant practical advantage over FFS for the study of sys-
tems without strong attractors.

The last method worth mentioning is that introduced re-
cently for calculating a large deviation function, an analog of
a Gibbs free energy that is a function of a “pressure” conju-
gate to the average of a static or dynamic order parameter
over a long trajectory.22,23 As in our algorithm, low probabil-
ity states are sampled to a greater degree than in physically
weighted simulations. However, the methods are quite differ-
ent operationally. To obtain a large deviation function, statis-
tics are accumulated during a diffusion Monte Carlo simula-
tion biased with a nonequilibrium analog of a linear umbrella
potential. More importantly, the Legendre transformation to
obtain an analog of a Helmholtz free energy yields a distri-
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bution for an expectation value of an order parameter �i.e., an
average over a long trajectory� rather than a distribution for
its instantaneous value, as obtained in the present work. The
two algorithms are thus complementary: that for large devia-
tions provides enhanced sampling of rare trajectories, while
ours enables one to focus sampling on a projected region of
phase space to obtain a steady-state probability distribution
with a desired accuracy. In contrast to the path sampling
methods reviewed above,9,10,12,13,15 neither algorithm relies
on relaxation to strong attractors. Given that both algorithms
can be employed with any �quasi�ergodic dynamics, we be-
lieve that together they open up the possibility of efficiently
addressing a broad range of problems concerning irreversible
systems that were previously intractable.

Note added in proof. Following acceptance of this paper,
it was shown that it is possible to obtain the steady-state
probability distribution from two FFS calculations performed
in opposite directions �C. Valeriani, R. J. Allen, M. J. Mo-
relli, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 127,
114109 �2007��. Although statistics can be accumulated for
multiple order parameters in these simulations, the sampling
can only be constrained in one coordinate, and the algorithm
is limited in applicability to systems with only two strong
attractors. As such, our algorithm can be used to obtain
steady-state distributions in a much wider class of problems
than can that based on FFS.
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