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Umbrella sampling enforces uniform sampling of steady-state distributions that are functions of
arbitrary numbers of order parameters. The key to applying such methods to nonequilibrium
processes is the accumulation of fluxes between regions. A significant difference between
microscopically reversible and irreversible systems is that, in the latter case, the transition path
ensemble for a reaction can be significantly different for “forward” and “backward” trajectories.
Here, we show how to separately treat forward and backward pathways in nonequilibrium umbrella
sampling simulations by working in an extended space. In this extended space, the exact rate �for
equilibrium or nonequilibrium processes� can be calculated “for free” as a flux in phase space. We
compare the efficiency of this rate calculation with forward flux sampling for a two-dimensional
potential and show that nonequilibrium umbrella sampling is more efficient when an intermediate is
present. We show that this technique can also be used to describe steady-state limit cycles by
examining a simulation of circadian oscillations. We obtain the path of the limit cycle in a space of
22 order parameters, as well as the oscillation period. The relation of our method to others is
discussed. © 2009 American Institute of Physics. �doi:10.1063/1.3244561�

I. INTRODUCTION

Systems far from equilibrium are of major interest,1,2

and there have been significant advances in our ability to
describe them recently. In particular, systems with well-
defined steady states are now known to be constrained by
certain symmetry relations.3 For such systems, the steady-
state distribution is analogous to the free energy in that any
quantity of interest can be calculated from it. However, like
the free energy, the steady-state distribution can be slow to
converge in simulations owing to minima and barriers that
hinder exploration of phase space. In such cases, it is useful
to divide the space into regions that can be treated indepen-
dently in parallel �umbrella sampling�.4–6 Some of the fea-
tures that make irreversible systems interesting also present
challenges for umbrella sampling. One must account explic-
itly for the fact that the flux across any boundary introduced
is nonzero because detailed balance is not satisfied. For the
same reason, the transition path ensemble that connects two
stable states can be significantly different for “forward” and
“backward” trajectories. In other words, the physically
weighted ensemble of paths from A to B in general differs
from that of paths from B to A.

Motivated by the string method for equilibrium
systems,7–13 we previously introduced a version of our non-
equilibrium umbrella sampling algorithm5 that focuses sam-
pling on a tube of transition paths that connect two basins in
a phase space of arbitrary dimension.6 The method differs
from other interface-based methods such as milestoning,14–17

forward flux sampling �FFS�,18–22 and �partial-path� transi-
tion interface sampling,23–25 in that the set of interfaces

evolves over the course of the simulation from an initial
guess toward its final configuration. This is important as the
choice of reaction coordinate �or equivalently, the set of in-
terfaces orthogonal to it� is often nonobvious and strongly
affects the efficiency of a simulation.26 However, as dis-
cussed by Dickson et al.,6 successful application of the
stringlike version of nonequilibrium umbrella sampling re-
quires significant overlap between the forward and backward
trajectories such that a single tube in the space of order pa-
rameters could contain them.

Here we extend this method6 to treat forward and back-
ward trajectories separately by defining two strings, each
with an associated direction. We show how this procedure is
equivalent to performing a single nonequilibrium umbrella
sampling simulation in an extended phase space. In this ex-
tended phase space, we can obtain the forward and backward
transition rates “for free” as a flux. We also show that this
technique can be used to describe steady-state limit cycles. In
Sec. II, we briefly outline the details of the nonequilibrium
umbrella sampling method, introduce the dual-string formal-
ism, and show how to obtain transition rates. We also de-
scribe a weight-balancing scheme that can accelerate conver-
gence. We apply this method in Sec. III A to a two-
dimensional potential with distinct forward and backward
transition pathways and calculate rates and steady-state dis-
tributions. We compare the efficiency of obtaining these re-
sults with that of FFS on the same system. Both algorithms
are able to calculate the rate, but in the presence of a long-
lived intermediate, the umbrella sampling algorithm con-
verges faster. In Sec. III B we illustrate the ability of our
method to describe a limit cycle in a multidimensional order
parameter space and determine its period by applying it to a
model of circadian oscillations.27,28a�Electronic mail: dinner@uchicago.edu.
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II. METHODS

The nonequilibrium umbrella sampling method is de-
scribed in detail elsewhere.5,6 Essentially, the order param-
eter space is divided into regions and a separate simulation �a
“walker”� is performed in each region. To perform these
piecewise simulations accurately in a nonequilibrium system,
two quantities are needed for each region: the weight �the
probability of an unconstrained walker being in that region�
and the entering flux distribution �the probability density of
trajectories entering into the region�. Both quantities are ob-
tained by monitoring attempted region-to-region boundary
crossings of the walkers. When a walker tries to leave its
region, it is reinitialized according to the region’s flux distri-
bution. One way to establish these distributions �the tech-
nique that is used here� is to approximate them using lists of
saved entry points of length Nlist and to continually refresh
them by overwriting the oldest entries.6

We refer to the set of regions into which the order pa-
rameter space is divided as a �regular or irregular� “lattice.”
We found that using two lattices that are shifted relative to
each other enhances the stability of the algorithm. Simula-
tions on each lattice are used to record points for the fluxes
on the other lattice. The weights of the regions are updated
according to methods given in Sec. II C and the steady-state
distribution is obtained once the weights and fluxes converge
self-consistently. There is no computational cost associated
with having two lattices rather than one as the results are
pooled at the end of the simulation.

A. Dual-direction scheme

In our original algorithm,5 the regions used to confine
the walkers are static and evenly tile an order parameter
space, such that the computational cost of the algorithm in-
creases exponentially with the dimensionality of the space.
In Voronoi-based nonequilibrium umbrella sampling,6 this
dependence is removed by instead using Voronoi polyhedra
as regions. Each Voronoi polyhedron is defined by a point in
phase space �an “image”�, such that every point in the poly-
hedron is closer to that image than to any other. The images
together form a “string” that connects two areas of interest in
phase space. By defining the regions as above, the computa-
tional cost of the simulation is decoupled from the dimen-
sionality of the order parameter space. Initially, the images
are placed in an arbitrary position �usually a linear interpo-
lation between initial and final states� and over the course of
the simulation the images evolve until the path stabilizes
inside the reaction tube. The movement of the images based
on the sampling5,6 is according to the finite-temperature
string method.7–13 Namely, after a specified length of time
�Tmove�, the average position of each walker is determined,
and the positions of the images �zi� of the first string are
moved toward their walker averages:

zi
† = zi

� + �����xi�� − zi
�� , �1�

where zi
� is the original position of image i, � is a parameter

between 0 and 1 controlling the rate of the image movement,
��x� returns the position in the order parameter space given x
in the full space, and ���xi�� is the average position of walker

i during the last time interval. The string is then smoothed
according to

zi
‡ = zi

† + ��zi+1
† + zi−1

† − 2zi
†� , �2�

where � is a positive parameter that controls the strength of
the smoothing �note that, while Eq. �2� was employed by
Dickson et al.,6 the first zi

† on the right hand side was incor-
rectly omitted from Eq. �7� of that paper�. Finally, the string
undergoes a reparametrization step such that the images are
moved from zi

‡ to positions spaced equally in arc length to
ensure even sampling along the path. For our purposes, Eqs.
�1� and �2� are used to move the images in the first lattice,
and the second lattice images are placed at the midpoints of
the images of the first. More information about this proce-
dure can be found in Vanden-Eijnden and Venturoli13 and
Dickson et al.6

In the present study, we perform the umbrella sampling
algorithm as above, while explicitly defining separate strings
for the forward and backward transition path ensembles. This
is done by defining two basins, A and B, that are independent
of the Voronoi sampling regions, and separating trajectories
that last visited A from those that last visited B. Let Rm be
the normal m-dimensional order parameter space, and let the
trajectory �x�t�� have the additional property that xm+1�t�=0
if the trajectory last visited A, and xm+1�t�=1 if the trajectory
last visited B. Trajectories can now be defined in an extended
phase space Rm+=Rm� �0,1�. Figure 1 shows an example of
a set of images spanning Rm+. To employ the Voronoi-based
procedure, we define the distance between two points x and
y in Rm+ as follows:

	x − y	 = 
� if xm+1 � ym+1,

��
i=1

m

�xi − yi�2 otherwise, 
 �3�

such that points that originated from different basins are in-
finitely far apart. This way, all Voronoi regions are either
wholly in Rm�0 or Rm�1. We denote the set of Voronoi
regions in Rm�0�Rm�1� by SA�SB�. Using the theory
above, two forward and backward pathways in Rm can be
viewed as a single pathway in Rm+, and since boundary
crossings occur in the same way as before, no other modifi-
cations to the algorithm are needed.

B. Obtaining rates

As previously noted in Warmflash et al.5 and Dickson et
al.,6 one should be able to obtain kinetic quantities from
nonequilibrium umbrella sampling simulations because they
harvest segments of true trajectories piecewise and thus con-
tain information about dynamics. Vanden-Eijnden and
Venturoli29 recently enunciated a specific procedure based on
nonequilibrium umbrella sampling to calculate the rate of a
�equilibrium or nonequilibrium� process. Here we present an
equivalent but more compact derivation of the key expres-
sion for clarity and completeness.

The rate of transition from a basin A to a basin B is, by
definition, given by the flux of trajectories that originated in
A and entered B:18
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kAB =
�̄B�SA

h̄A

, �4�

where �B�SA
is the flux into basin B of trajectories that origi-

nated in basin A, and hA is a history-dependent indicator
function that is equal to 1 �0� if the system was most recently
in basin A�B�. Overbars denote time averages. Since the al-
gorithm described above now computes fluxes separately for

trajectories that originated in each basin, �̄B�SA
can be calcu-

lated directly.

�̄B�SA
is obtained from the umbrella sampling simulation

by measuring the average flux contributions into basin B
from all regions j in SA �denoted �̄ jB�. We then have an
expression for the rate constant for each lattice a:

kAB
�a� =

� j�SA
�a��̄ jB

� j�SA
�a�W̄j

=
� j�SA

�a�njBW̄j/�Tj

� j�SA
�a�W̄j

, �5�

where njB is the number of trajectories from region j entering
basin B over a given sampling period, and �Tj is the time

elapsed in region j during that sampling period. W̄j is the
time-averaged weight of region j, and we used the fact that

h̄A = �
j�SA

�a�
W̄j . �6�

In practice, kAB
�1� and kAB

�2� are calculated separately and then
averaged.

C. Global weight transfer scheme

In our previous work,5,6 the weights evolved over the
course of the simulation by transferring incremental amounts
from one region to another whenever walkers attempted to
leave their regions:

− �WB = �WB� = sWBT�/TB, �7�

where B labels the region to which the walker is confined, B�
labels the region to which it attempted to go, � denotes an
additive change, and s is a user-defined parameter chosen to
optimize convergence. The factor T� /TB allows the simula-
tions in different regions to be run asynchronously; TB is the
time elapsed in region B, and T� is an arbitrary standard that
in practice is chosen to be the time elapsed in a particular
region of the system. We use a time-averaged weight �de-

noted W̄B� to compute the fluxes:5,6

W̄B =
1

n
�
i=1

n

WB�iTwt/n + Tint� , �8�

where WB�t� is the instantaneous weight of that region at
time t. Twt is the weight update interval, n is an arbitrary
discretization constant set here to 100, and Tint denotes the
time at the beginning of that sampling interval.

Although this “local” weight balancing scheme is ap-
pealing in its simplicity, it is natural in the context of obtain-
ing steady-states to consider a “global” weight balancing
scheme in which the weights of all regions are updated si-
multaneously based on the fluxes. To this end, consider two
regions j and k. The flux from j into k can be measured in
two ways: the number of trajectories in region j that exit into
k can be counted and weighted by Wj; additionally, the num-
ber of trajectories that are initialized in region k that origi-
nated in j can be counted and weighted by Wk. Here we
match these two fluxes to get an equality involving the two
weights. Note that this is not the same as detailed balance; it
only ensures continuity of the trajectory flux across the
boundaries.

The physically weighted flux from j to k, as measured in
region k, is given by

�flux� jk
k = Wk

�a�F̄kj
�a�, �9�

where F̄kj
�a� is the average number of trajectories in region k

being initialized at the j :k interface per unit time. F̄kj
�a� is

calculated using the flux list for region k:
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FIG. 1. The two-dimensional potential with two pathways created by a
strong force in the clockwise direction. The top and bottom plots show the
images and the Voronoi polyhedra for a converged forward and backward
string, respectively. The black circles centered at ��3,0� and �3,0� are the
basins. The scale bar is in units of kT and the parameters used to generate
the map are those given in the text with 	=3.0.
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F̄kj
�a� =

Nk
�a�

Tk
�a� ��l�Fk

�a�Wbk�l�
�b� hkj

�a��l�

�l�Fk
�a�Wbk�l�

�b� � , �10�

where the quantity in parentheses is the weighted fraction of
the flux list for region k of trajectories coming from region j.
Nk

�a� is the total number of trajectory segments that have been
initialized in region k during the time Tk

�a�, bk�l� is a function
that returns the region in which crossing point l was re-
corded, hkj

�a��l� is an indicator function equal to 1 if crossing
point l came from region j and 0 otherwise, and a ,b=1,2 or
2,1. Fk

�a� is the flux list for region k on lattice a.
Since the weights and fluxes evolve from an inaccurate

initial guess to their steady-state quantities, all quantities that
are dependent on the weights and fluxes during this evolution
are also inaccurate. The motivation behind this weight trans-
fer scheme is to use quantities that are independent of the
weights and fluxes, so they can be accurately determined
early in a simulation. Consider the conditional probability
pijk

�a�: the probability �measured in region j� of a trajectory
exiting via the j :k interface, given that it originated on the
i : j interface �all regions are on lattice a�. This quantity is
relatively insensitive to errors in the weights and fluxes.

Using this probability, the quantity in Eq. �9� as com-
puted in region j can be expressed as

�flux� jk
j = Wj

�a��
i

pijk
�a�F̄ji

�a�, �11�

where the probability pijk
�a� is estimated directly during the

simulation. The sum is required in Eq. �11� since trajectories
that originated on any point on the boundary of region j can
contribute to the flux into region k. Equations �9� and �11�
yield a constraint

Wj�
i

pijkF̄ji − WkF̄kj = 0 �12�

between each j :k pair where transitions occur. Here, we
dropped the lattice indices since all quantities are on the
same lattice.

Since there are many more available equations than un-
knowns, we are free to choose the set of equations that in-
volve the most transitions, and hence have the most accurate

statistics for the p and F̄ quantities. We choose transitions
between regions around the “principal loop” �Fig. 2�, those
passing sequentially through the images of the forward and
backward strings, and connecting both strings at the end
points. We make this restriction to limit large weight fluctua-
tions caused by occasional transitions from high probability
regions to low probability regions.

A matrix �M� is then constructed coupling Nim equations
of the form in Eq. �12� as follows:

Mji = 
�
l

pljkF̄jl if i = j ,

− F̄kj if i = k ,

0 otherwise,

 �13�

where k is the region following j in the principal loop, and
Nim is the total number of regions on the lattice. To insert the
normalization condition �and to relieve the overdetermina-
tion� a row �i� is chosen and its elements are replaced with 1
to form the matrix Mnorm. The weights are then determined
by

Ŵ�a� = �Mnorm
�a� �i��−1êi �14�

for each lattice a, where êi is the vector with its ith entry
equal to 1, and all others equal to 0.

For each weight update step this process is repeated once
for each region on the lattice using all possible values of i,
and then the weights are moved toward the average value
obtained:

Ŵfinal
�a� = �1 − �W�Ŵinitial

�a� +
�W

Nim
�a���

i=1

Nim
�a�

�Mnorm
�a� �i��−1êi� , �15�

where Ŵinitial
�a� is the weight vector before the update. Note

that Nim
�2�=Nim

�1�−2 since the forward and backward strings
have one less image each. Since this process requires that
there be transitions from the last region of the forward �back-
ward� string to the first region of the backward �forward�
string, we keep the positions of the string end point images
equal by moving them to their joint averages, as opposed to
their individual averages as shown in Eq. �1�. In other words,

z1f
† = z�Nim/2�b

† = z1f
� + �� ���x1f�� + ���x�Nim/2�b��

2
− z1f

� � , �16�

where z1f denotes the first image in the forward string. This
is done in the same fashion for the �z�Nim/2�f ,z1b� pair of end
points. In practice, we found that the local weight transfer
scheme achieves higher accuracies, but that the global
scheme is more efficient early in a simulation; both proce-
dures are used in this work. As noted in Sec. IV, Vanden-
Eijnden and Venturoli introduced an alternative global
weight transfer scheme.29

D. Forward flux sampling

Here we state the important operational features of FFS
in the notation used above, as well as some aspects specific
to our implementation. Further information can be found in
previous work.18–21 FFS computes the rate using Eq. �4�, but

instead of calculating �̄B�SA
directly, the space between the

basins A and B is divided by a series of nonintersecting in-
terfaces �
i�, and the flux is computed using the product of
conditional probabilities:

1 2 Nim /2

Nim /2 12

Forward

Backward
FIG. 2. A schematic of the “principal loop” used for the global weight
balancing scheme. An arrow from region j to region k indicates that the flux
balance Eq. �12� between those two regions is used to form the matrix M.
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�̄B�SA
= �̄0�SA

P�
B�
0� = �̄0�SA�
i=0

n−1

P�
i+1�
i� , �17�

where �̄0�SA
is the time-averaged flux reaching interface 
0

measured in SA, and P�
i+1 �
i� is the probability of reaching
interface 
i+1 from interface 
i before returning to the first
interface, 
0 �the boundary of basin A�. Here, 
n=
B is the
boundary of basin B.

It has been shown previously by Valeriani et al.21 that
steady-state distributions can be obtained by combining the
results from separate forward and backward FFS simula-
tions. The probability distribution �over an order parameter
q� between the interfaces can be resolved by accumulating
the density at q of trajectories leaving interface 
i in the
forward set of simulations �denoted by “+”�:

�+�q;
i� =
Nq

�qMi
. �18�

Here, Nq is the number of times the order parameter has a
value between q and �q over all the trial runs, and Mi is the
number of trial runs. The probability distribution conditional
on starting at 
0 is then

�+�q;
0� = �+�q;
0� + �
i=1

n−1

�+�q;
i��
j=0

i−1

P�
 j+1�
 j� �19�

�the variable �+ is chosen to be congruent with the original
notation in Valeriani et al.21 and is not related to the move-
ment fractions � or �W mentioned earlier�. Once these quan-
tities are obtained in the backward simulation as well, the
full steady-state probability distribution can be obtained,

p�q� = pA�0�SA
�+�q;
0� + pB�n�SB

�−�q;
n� , �20�

where pA and pB are the steady-state probabilities of basins A
and B, respectively. This method yields the steady-state dis-
tribution between 
0 and 
n. The contributions from the ba-
sins can be computed in separate physically weighted simu-
lations and incorporated using a least-squares fitting
procedure.21 Note that Eq. �20� assumes that there are no
intermediates in the system �i.e., pA+ pB=1�. To compare al-
gorithms in the present study, we generalize Eq. �20� by re-

placing pA and pB with h̄A and h̄B, respectively. The latter
pair of quantities can be obtained in a FFS simulation using

h̄AkAB= h̄BkBA together with h̄A+ h̄B=1, both of which hold in
general.30

In previous applications of FFS, the number of trial
simulations was set manually for each interface to ensure
good statistics and efficient calculation.18,19,21,22 A goal of the
present study is to examine the accuracies of our algorithm
and FFS as functions of simulation time. Because simulation
time can be allocated in different ways in FFS, a fair assess-
ment requires running many FFS simulations of controlled
length. We take the approach of Sear31 and fix the number of
simulations that reach the next interface �Np� rather than the
total number of trajectories launched from each interface. We
then run FFS simulations with different values of Np and
determine their accuracy, while keeping track of the total
number of time steps needed to obtain the required number

of accepted trajectories. The efficiency is obtained by exam-
ining the accuracy as a function of the total number of time
steps. A procedure has been introduced to optimize the num-
ber of trial trajectories for each interface with respect to the
computational cost of the algorithm;32 we expect that this
does provide a boost in efficiency, but it is not implemented
here.

III. EXAMPLES

A. Two-dimensional system with two pathways

We first examine a two-dimensional system with two
pathways. The potential surface is defined by

V = ��r − 
�2 − �1 cos�2�� − �2 cos�4�� , �21�

where r= �x2+y2�1/2, and � is the angle in radians measured
counterclockwise from the x axis. The potential surface has a
ring-shaped valley of radius 
 with basins at �=� /2,� ,
3� /2, and 2�; � controls the depth of the ring, and �1 and
�2 control the depth of the basins. We drive the system out of
equilibrium using a constant external force in the −� �clock-

wise� direction �Fext=−F�̂�. The force creates distinct for-
ward ��→0� and backward �0→�� pathways �Fig. 1�.

The system evolves according to the equation of motion,

X�t + �t� = X�t� −
�t

m�
��XV − Fext� + �XG, �22�

where �t is the numerical integration time step, �XG is a
random noise term with components chosen randomly from
a Gaussian distribution with zero mean and variance 2D�t,
and X= �x ,y�. D is the diffusion coefficient, which is related
to the friction coefficient � and the inverse temperature 	 by
D= �m	��−1.

The system parameters used here are �=3.0, 
=3.0,
�1=2.25, �2=4.5, �=1.5, F=7.2, and �t=0.005. The inverse
temperatures used ranged from 	=1.0 to 	=3.0. Basins A
and B are defined as circles of radius R=1.0 centered at
�−
 ,0� and �
 ,0�, respectively. There are a number of dif-
ferent parameters associated with the umbrella sampling al-
gorithm: T is the total time of the simulation for each region,
Tmove is the string update period, Nlist is the size of the flux
list, Nim is the number of images used for all lattice 1 images
�there are 2Nim−2 images total�, Twt is the weight update
period, s is the weight transfer parameter given in Eq. �7�, �
and � are the string parameters given in Eqs. �1� and �2�, and
�W is the weight update parameter defined in Eq. �15�. The
values of these parameters are given in Table I for the dif-
ferent simulation phases and temperatures.

For the FFS simulations, the interfaces 
0 and 
n were
chosen as the basin boundaries for A and B, respectively, to
easily compare the results with those obtained from umbrella
sampling. Interfaces 1 through n−1 were vertical lines
spaced evenly from −
+R+� to 
−R−�, where �=0.01 to
prevent the circular and linear interfaces from intersecting. In
the FFS simulations, a fixed number �Np� of crossing points
were obtained on each interface. Ten FFS simulations were
run for each of nine different values of Np=100, 200, 500,
1000, 2000, 5000, 10 000, 20 000, 50 000. For each value of
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Np the total number of time steps taken in each simulation is
averaged, and this average is used to estimate the error as a
function of simulation time.

The projections of the steady-state distribution onto the
� coordinate are obtained using conventional �CONV�, non-
equilibrium umbrella sampling �UMB�, and FFS simulations
for the high-temperature value �	=1.5�, and are shown in
Fig. 3. Since the FFS distributions do not include the basin
contributions, we compare them with the others by normal-
izing over the range of � that is external to the basins. The
projections all agree, and they clearly show the locations of
the basins, intermediates, and transition states.

We examine the forward and backward rates, as calcu-
lated from Eq. �4�. The error in a given simulation is taken to
be

error�t� = �log�k�t�� − log�k��� , �23�

where k� is the target rate constant. This choice for the error
identifies both overestimates and underestimates. For 	=1.5
the target rate constant is obtained by averaging the rate ob-
tained from ten long, independent conventional simulations.
The target rate for 	=3.0 was obtained by fitting the rate as

a function of temperature to an Arrhenius form and extrapo-
lating �Fig. 4�. For each method, the errors plotted in Fig. 5
are the root mean squared averages of errors obtained from
ten simulations. For the umbrella sampling algorithm, the
results are a rolling average over the last five points in the
curve. This both excludes early inaccurate results from the
latter parts of the curve and lessens the effects of noise.

Figure 5 compares the efficiency of FFS, umbrella sam-
pling and conventional sampling for 	=1.5 and 	=3.0. For
	=1.5, transitions from left to right are common, and con-
ventional sampling is most efficient. The umbrella sampling
algorithm is less efficient than conventional sampling for this
inverse temperature because the time it takes for the weights
and fluxes to converge is long compared to the mean first
passage time. FFS does not outperform conventional sam-
pling in this case due to the presence of the intermediates.

TABLE I. Parameters used in the umbrella sampling algorithm for the two-dimensional potential. In phase I, the
images are free to move; their positions are fixed for phases II and III. Phase II is run with the global weight
transfer algorithm until the rate converges, and phase III uses the local weight transfer algorithm to determine
the rates and steady-state distributions more accurately.

	=1.5 	=3.0

Phase I Phase II Phase III Phase I Phase II Phase III

Wt. Alg. Global Global Local Global Global Local
T /�t 4�105 1�106 2�107 4�105 2�107 2�108

Tmove /�t 10 000 � � 10 000 � �

Nlist 100 500 500 100 1000 500
Nim 15 15 15 30 30 30
Twt /�t 100 000 20 000 10 000 100 000 100 000 10 000
s ¯ ¯ 5�10−3

¯ ¯ 1�10−2

� 0.1 ¯ ¯ 0.1 ¯ ¯

�W 1.0 1.0 ¯ 1.0 1.0 ¯

� 0.1 ¯ ¯ 0.3 ¯ ¯
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FIG. 3. Projections of the steady-state distribution onto � for 	=1.5 ob-
tained using conventional simulation �CONV�, umbrella sampling �UMB�,
and FFS. The two highest peaks are due to the basins, located at �=0 and �,
and the two smaller peaks are due to the intermediates, located at �=−� /2
and � /2.
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FIG. 4. The target mean first passage time �MFPT� of 1.35�0.20�1011

�right-most point� is obtained by extrapolation of a linear fit. The logarithms
of MFPTs obtained from straightforward simulations for 	=1.0,1.5,
2.0,2.5 �circles� are fit linearly assuming an Arrhenius dependence of the
rate on the temperature. The error bars are equal to, or smaller than, the
symbols for all points. The uncertainty in the target value was estimated
using the fits shown in the figure, which were chosen to maximize and
minimize the slope of the linear fit. This was done using the mean minus
�plus� one standard deviation for 	=1.0,1.5 and the mean plus �minus� one
standard deviation for 	=2.0,2.5 for the first �second� line. In this way, we
estimate that the 	=3.0 target is accurate up to �2.0�1010, and that the
efficiency curves in the bottom of Fig. 5 are accurate above an error of 0.07.
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The bottom of Fig. 5 compares FFS and umbrella sampling
for 	=3.0. FFS takes from 3 to 30 times longer than um-
brella sampling to converge to a given accuracy. For this
inverse temperature, it was unfeasible to determine the rate
accurately with conventional simulations.

A summary of the performance of FFS and umbrella
sampling for different values of 	 is given in Fig. 6. The
quantity on the y axis is T1 /MFPT, where T1 is the number
of sampling steps required to reach an error of 1, which
corresponds to an order-of-magnitude estimate of the rate
constant. We divide T1 by the mean first passage time �in
numbers of steps� to compare with conventional simulations.
The line T1 /MFPT=1 is plotted as it marks the point where
obtaining an order-of-magnitude approximation of the rate
requires about the same number of steps as it would take in
a conventional simulation.

Figure 6 shows the main result of our work: for high
temperatures �low 	� transitions are frequent and both en-
hanced sampling methods are less efficient than conventional
sampling. As the temperature decreases, the efficiency of the
umbrella sampling algorithm improves dramatically, while

FFS is hindered by the presence of the intermediate. Similar
studies were done on a system without an intermediate and
FFS was found to be more efficient than both umbrella and
conventional sampling �not shown�; this is the case even
when the umbrella sampling interfaces are chosen to be the
same as those for FFS owing to the simulation time required
for the weights to converge.

B. Simulation of circadian oscillations

Circadian rhythms are sustained oscillations generated
by most living organisms to adapt to the natural periodicity
of their terrestrial environment. These oscillations are gener-
ated autonomously through negative autoregulatory feedback
of gene expression, and occur with a period close to 24 h
even in conditions of constant darkness.33 The mechanism of
these oscillations can be broken down into linear chemical
equations and simulated using the Gillespie algorithm.34

Here, we apply the Voronoi-based nonequilibrium umbrella
sampling procedure to a model for circadian oscillations de-
veloped by Gonze et al.27,28 to demonstrate the ability of the
algorithm to find a periodic path in a space of order param-
eters and determine the associated oscillation frequency.

The model used here employs five main variables and is
based on the negative feedback exerted by a protein �P� on
the expression of its gene �G�. The gene is expressed in the
nucleus and then transcribed into messenger RNA �MP�. MP

is then transported to the cytosol where it is degraded and
translated into the protein P0. The protein undergoes cata-
lyzed phosphorylation and dephosphorylation in multiple
steps: P0→P1→P2. P2 is then either marked for degradation
or reversibly transported into the nucleus �P2→PN�. The
nuclear form of the protein represses the transcription of the
gene, completing the cycle. The kinetic expressions describ-
ing the above system contain nonlinear terms: the enzyme
reaction rates are described by Michaelis–Menten expres-
sions, and the successive binding of repressors to the gene
promoter is described by Hill type expressions. These have
been converted into a larger system of 30 elementary reac-
tions involving 22 species that are summarized in Table II of
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FIG. 5. Convergence of the rate constant for the two-dimensional potential
with intermediates. �top� Umbrella sampling �UMB�, conventional sampling
�CONV�, and FFS for 	=1.5. At this temperature, transitions are common
and conventional sampling is shown to be the most efficient. �bottom� Um-
brella sampling and FFS for 	=3.0. At this temperature, a single transition
in each direction requires about 2.7�1011 simulation steps in conventional
simulations, limiting the comparison to umbrella sampling and FFS. In both
figures, UMB1 shows the global weight balancing step and UMB2 shows
the local weight balancing step. For the FFS efficiency curves, each point is
a separate group of simulations with a different value of Np. The gap be-
tween the UMB1 and UMB2 curves in the top figure is the result of the
omission �for clarity� of three points that were uncharacteristically low as
the flux list was being rebuilt.
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FIG. 6. A summary of the performance of umbrella sampling �UMB� and
FFS for a range of inverse temperatures �	�. The y axis shows T1, the
number of time steps required to achieve an error of 1 �roughly an order-
of-magnitude estimate of the rate constant� divided by the mean first passage
time.
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Gonze et al.27 A 22-dimensional order-parameter space is
constructed using the copy number of each species.

We simulate this system using both conventional
Gillespie simulations and the umbrella sampling algorithm.
For the umbrella sampling algorithm, basins are defined us-
ing the number count of MP :MP�25 is basin A, and MP

�120 is basin B. These numbers are chosen such that an
unrestricted trajectory would go through both basins in each
oscillation. No comparison of the rate of convergence was
made with conventional simulations or FFS since there are
no significant bottlenecks in phase space along the circadian
cycle. Rather, we examine both the projection of the reaction
path onto three different phase planes �Fig. 7� as well as the

TABLE II. Parameters used in the umbrella sampling algorithm for the
circadian oscillations. T, Tmove, and Twt are given in numbers of simulation
steps.

Phase I Phase II

T 5�107 3�108

Tmove 200 000 �

Nlist 100 1000
Nim 5 5
Twt 10 000 1 000 000
s 5�10−3 1�10−3
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FIG. 7. Projections of circadian oscillations onto system variables. The left figures show the progression of the string used by the Voronoi-based umbrella
sampling method, where the progression goes from light to dark, and the forward paths are shown in red and the backward paths are shown in blue. These
snapshots were taken at T=0, 1, 2, and 50�106 simulation steps. The right figures show a typical straightforward Gillespie trajectory which was run for
T=8�106, or about 14 revolutions. The top figures show the projection of the oscillation onto the PNMP phase plane, and they agree with previous results
�Ref. 27�. The middle and bottom figures show the projection onto the P0P1 and P1P2 phase planes, respectively. Good agreement between the configuration
of the string and the straightforward trajectories is obtained for all projections onto pairs of the 22 degrees of freedom in the system.
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accuracy of the mean period of oscillation. Figure 7 shows
the evolution of the forward and backward strings from the
initial guesses toward the reaction tube obtained by conven-
tional simulations shown on the right. The end points of the
initial forward and backward paths were obtained using four
points from a short conventional simulation. Good agree-
ment is shown between the converged string used by the
umbrella sampling algorithm and the conventional trajectory
in all projections, which demonstrates the ability of the um-
brella sampling algorithm to describe an oscillatory path in a
high-dimensional order-parameter space. The rate is obtained
using only the local weight-balancing algorithm; the param-
eters used are given in Table II. A comparison of the mean
first passage time for both parts of the loop and the total
period obtained by conventional sampling and umbrella sam-
pling is given in Table III.

IV. DISCUSSION

Here we demonstrated the application of the nonequilib-
rium umbrella sampling algorithm5,6,29 to an extended phase
space that separates “forward” and “backward” trajectories
with respect to two arbitrarily defined basins in phase space.
In this extended phase space, rates can be easily computed as
the flux into the corresponding product basin. The dual-string
formalism introduced here also enables straightforward cal-
culation of statistics for periodic systems, such as the circa-
dian clock model.27,28 For systems that instead reach limit
cycles in response to periodically varying external forces, the
nonequilibrium umbrella sampling algorithm could be ap-
plied by associating with each copy of the system a “clock”
variable that reports the time within the period of the pertur-
bation. This variable would be saved with the phase space
point during boundary crossings and used to reset the exter-
nal environment when a walker is reintroduced to a region
following an attempt to leave it. In other words, the reinitial-
ized copy would proceed from the point in the period at
which the phase space point used to restart the simulation
was saved, so the “clock” runs continuously for each trajec-
tory. This would avoid mismatches between phase space
points and the external perturbation, which could lead the
system away from the limit cycle. The output of the algo-
rithm �a steady-state probability distribution in space time�
would be equivalent to a time-ordered sequence of the prob-
abilities of the spatial order parameters along the limit cycle.

We showed for a two-dimensional system that the con-
vergence of the umbrella sampling algorithm was faster than
FFS18–21 when intermediates were present, as is common in

complex systems. In general, FFS is sensitive to local
minima along the reaction path. For a trajectory to be termi-
nated in the standard version of FFS, it must either reach the
next interface in the sequence, or return to the first interface.
For systems with long-lived intermediates such as the two-
dimensional system examined above, this results in the inte-
gration of long trajectory segments during which the system
is trapped in a local minimum. To alleviate this problem, a
pruning procedure was introduced that terminates trajectories
on their way back to the first interface �see Appendix C of
Allen et al.19�. In this procedure, fewer trajectories that go
backward �toward the first interface� are simulated, and the
trajectories that are simulated are given a higher weight to
compensate for those that were prematurely terminated. It
remains an open question as to whether this pruning proce-
dure provides significant boosts to computational efficiency
because P�
i+1 �
i� includes contributions from both trajecto-
ries that go straight to 
i+1 and ones that first go back to 
i−1,
and thus many long trajectory segments that sample the in-
termediate could still be required to determine P�
i+1 �
i�
accurately.

The method explored here was developed concurrently
with the “trajectory parallelization and tilting” scheme re-
cently proposed by Vanden-Eijnden and Venturoli.29 That
method builds on nonequilibrium umbrella sampling to ob-
tain an equivalent calculation of transition rates �for equilib-
rium or nonequilibrium systems� using fluxes in phase space
given a set of regions. The method works by first obtaining
the full steady-state distribution �with contributions from
both SA and SB� and using these results to obtain the condi-
tional distributions in SA and SB. The rate calculation dis-
cussed in Sec. II B differs in that it works for an arbitrary
pair of basins that can be defined independent of the Voronoi
regions, and it is performed simultaneously with the determi-
nation of the probability distribution rather than as a separate
step. The extended phase-space formalism is also desirable
in that it naturally incorporates the dual-direction scheme
into the existing theory.

Vanden-Eijnden and Venturoli also propose a weight up-
date scheme that is built on the condition that the net flux
into any region is zero, as opposed to using the continuity of
flux across a boundary as was done in Sec. II C. There is
then only one equation per region, plus the normalization
condition. They rely exclusively on this global weight bal-
ancing scheme and use only a single lattice; they showed that
their implementation led to accurate results for the Müeller
potential with a transition rate of about 5�10−3 steps−1. Al-
though these additional modifications of the nonequilibrium
umbrella sampling algorithm are promising, a wider variety
of systems must be studied to determine their utilities be-
cause we found that, in general, problems make themselves
apparent as systems become more challenging to sample.

One can conceive of other �related� methods to estimate
rates. It was previously mentioned in the discussion of Dick-
son et al.6 that rates can be calculated exactly by stitching
together individual trajectories obtained piecewise in our
method. This approach seems promising at first, since it al-
lows for calculation of all moments of the first-passage time
distribution, but it is currently not possible in practice. Points

TABLE III. Mean first passage times �MFPTs� for the forward and back-
ward halves of the limit cycle for the circadian oscillatory system obtained
by conventional sampling �CONV� and umbrella sampling �UMB�. Basin A
is defined as all points with mRNA number counts less than 25, and basin B
is defined as all points with mRNA number counts greater than 120. Tf is the
MFPT from A to B, and Tb is the MFPT from B to A. The MFPTs are given
in hours.

Tf Tb Ttot

CONV 13.4�0.4 11.3�0.2 24.7�0.6
UMB 13.4�0.8 12.5�0.6 25.9�1.4
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are deleted from the flux list as it is refreshed, and longer
trajectories have a higher probability of being overwritten, so
a transition path ensemble generated in this fashion is
heavily biased toward short trajectories.

Alternatively, one can define each region as a state, and
use state-to-state transitions to build a rate matrix, as in
milestoning.14–16 This assumes that the states are Markovian,
i.e., that the probability of making a transition from state i to
state j is the same for each time step everywhere in state i.
For this reason, this approximation becomes better and better
as the states get smaller. A natural idea is to instead use the
interfaces between regions as the set of states instead of the
regions themselves. It has been shown that there exists a set
of optimal milestones, for which the Markovian assumption
is exact, and that these are the isocommittor surfaces that
foliate the space between the two basins.17 Furthermore, it
has been suggested that the isocommittor surfaces can be
obtained using the interfaces between Voronoi polyhedra
formed by a discretization of the principal curve obtained by
the string method.13,17 However, it should be noted that even
if the string converges exactly to the principal curve, the
interfaces orthogonal to the string only approximate isocom-
mittor surfaces at the string. The isocommittor surfaces are
not, in general, planar, and the difference between the inter-
faces and isocommittors will depend on the width of the
transition tube and the radius of curvature of the string.

The rate expression employed in Vanden-Eijnden and
Venturoli29 and the present study derives directly from the
fundamental definition of a reaction rate. The advance in the
present study is a practical one, concerned with how best to
obtain the needed statistics. This work builds on remarkable
advances over the last decade or so in reaction rate ap-
proaches. Advances such as transition path sampling,35–37

transition interface sampling,23–25 and FFS18–22 go beyond
transition state theory �TST�38–40 in that the rate is calculated
using statistics of an ensemble of paths, and the transition
state itself does not have to be identified. Although nonequi-
librium umbrella sampling is also a form of path sampling,
one can view the rate calculation here as a limiting case of
TST with the “transition state” moved to the boundary of the
product basin. In this case, there is no recrossing by defini-
tion, since paths in the SB ensemble are initiated the instant
that the system enters the B basin. With a basic computa-
tional framework to calculate stationary distributions and
rates in equilibrium and nonequilibrium systems now estab-
lished, it remains to delineate the rules that guide the con-
vergence of such simulations. In addition to exploring larger
applications, doing so requires further extending the theoret-
ical foundations. Success in this regard could also better link
the practical advances to the emerging principles of nonequi-
librium statistical mechanics.3
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