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Nonequilibrium umbrella sampling in spaces of many order parameters
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We recently introduced an umbrella sampling method for obtaining nonequilibrium steady-state
probability distributions projected onto an arbitrary number of coordinates that characterize a
system (order parameters) [A. Warmflash, P. Bhimalapuram, and A. R. Dinner, J. Chem. Phys. 127,
154112 (2007)]. Here, we show how our algorithm can be combined with the image update
procedure from the finite-temperature string method for reversible processes [E. Vanden-Eijnden
and M. Venturoli, “Revisiting the finite temperature string method for calculation of reaction tubes
and free energies,” J. Chem. Phys. (in press)] to enable restricted sampling of a nonequilibrium
steady state in the vicinity of a path in a many-dimensional space of order parameters. For the study
of transitions between stable states, the adapted algorithm results in improved scaling with the
number of order parameters and the ability to progressively refine the regions of enforced sampling.
We demonstrate the algorithm by applying it to a two-dimensional model of driven Brownian
motion and a coarse-grained (Ising) model for nucleation under shear. It is found that the choice of
order parameters can significantly affect the convergence of the simulation; local magnetization
variables other than those used previously for sampling transition paths in Ising systems are needed
to ensure that the reactive flux is primarily contained within a tube in the space of order parameters.
The relation of this method to other algorithms that sample the statistics of path ensembles is

discussed. © 2009 American Institute of Physics. [DOI: 10.1063/1.3070677]

I. INTRODUCTION

Many systems of interest in the physical and biological
sciences take energy and matter from their surroundings by
one means and return it by another; this exchange can drive
them far from equilibrium. In the past decade or so, there
have been dramatic advances in our ability to describe such
systems quantitatively.] Because few models are analytically
tractable, simulations are essential for interpreting experi-
mental data and for providing results that can be used to
validate theories. The central quantity of interest for such
systems is the steady-state probability distribution as a func-
tion of a set of collective variables (order parameters). This
quantity plays the role of a thermodynamic potential in that
statistical averages that enable connection with experimental
observables can be calculated from it.

Just as in the more familiar case of systems in equilib-
rium, systems in nonequilibrium steady states can be quite
microscopically dynamic even when macroscopically static.
A number of robust, well-established algorithms exist for
simulating the dynamics of microscopically irreversible
systems,z’5 but relaxation to the steady state can often be
prohibitively slow, especially when there are multiple
(meta)stable states with bottlenecks between them in phase
space. This problem can be overcome by methods that en-
hance sampling of low probability states and reaction path-
ways but still enable retrieval of the steady-state distribution
associated with the original dynamics. Indeed, such methods
are essential for obtaining information about dynamical
bottlenecks (transition states), which are of central impor-
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tance for elucidating mechanisms. However, almost all such
algorithms that exist rely on detailed balance (microscopic
reversibility) and a priori knowledge of the distribution
function (typically, Boltzmann weighting).>® By definition,
these do not hold in systems in nonequilibrium steady states.
New simulation paradigms are needed to treat this important
class of systems.

The key to developing algorithms for enhanced sampling
of nonequilibrium processes is that one must account care-
fully for the fluxes into regions. Perhaps the most well-
known method that does so is forward flux sampling
(FFS).*" In FFS, the phase space between two attractors is
divided by a series of nonintersecting interfaces. The system
is then ratcheted from one attractor to the other as follows. A
straightforward simulation is run in the first stable state, and
crossings of the interface closest to that stable state are re-
corded. Then, the configurations sampled at the first interface
are used to initialize new simulations. The trajectories that
reach the second interface prior to returning to the basin
around the attractor are counted, and configurations at the
second interface are saved. The last step is repeated for suc-
cessive interfaces until the second attractor is reached. FFS
was introduced originally to calculate rates of nonequilib-
rium processes, but information from forward and backward
FFS simulations can be combined to obtain steady-state
probability distributions.”

FFS has enjoyed much success, but it was designed for
studies of transitions between two strong attractors. This es-
sentially precludes its use to study transitions with long-lived
intermediates. Even when studying a system with only two
strong attractors, a poor choice of interfaces can diminish the

© 2009 American Institute of Physics
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FIG. 1. A schematic illustrating the result of poor interface placement in
FFS. The tube containing most transition paths that connect A and B is
indicated by solid lines, and the interfaces are indicated by dotted lines. One
wants to divide the reaction path into short trajectory segments, but inter-
faces i and i+1 are separated by long trajectory segments (gray) for this
choice of order parameter. Particularly if this portion of the tube contains the
rate-limiting step of the reaction, computational gains over physically
weighted simulations can be lost. This problem cannot be alleviated by
simply spacing the interfaces closer together.

computational gains over physically weighted simulations. If
the interfaces do not capture the important features of the
reaction path, then the simulation time required to connect
two interfaces can be prohibitively long no matter how
closely one spaces the interfaces. One such situation is de-
picted schematically in Fig. 1. Even in simpler cases, the
sampling of interface crossing points can be incomplete, and
there is no means for correcting resulting errors that arise
early in a FFS simulation.'*"? Choosing the interfaces opti-
mally (i.e., identifying the variables that best characterize the
progress of the reaction) is tantamount to determining the
reaction path itself.

We recently developed an alternate algorithm for en-
hanced sampling of a nonequilibrium steady-state probability
distribution.'* Our original motivation was that we wanted to
sample the tails of unimodal steady-state probability distri-
butions (e.g., for calculating correlation functions like those
in Warmflash and Dinner'”). Our algorithm can be viewed as
a form of umbrella sampling,2’3'16’17 in which the exploration
of a coordinate is divided into a series of separate simula-
tions (windows) with artificial weighting, and the results are
then combined in such a way that the physical probability
distribution (or free energy in the case of equilibrium sys-
tems) is recovered. Although it requires the existence of a
well-defined steady state, our algorithm does not assume that
there are two strong attractors and permits an arbitrary num-
ber of order parameters to be used to constrain sampling, in
contrast to FFS. The iterative nature of the method makes it
robust to errors that arise early in a simulation. Warmflash et
al."* demonstrated the ability of the method to accelerate
sampling of a distribution as a function of two order param-
eters for a genetic toggle switch; the method is also suffi-
ciently sensitive to reveal the bifurcation of transition paths
in the well-studied Maier—Stein model (see Ref. 18).%1°72!

One problem with umbrella sampling (whether for re-
versible or irreversible systems) is that, since the volume of
the space of order parameters scales exponentially with its
dimension, so does the total computational expenditure re-
quired for convergence of the probability distribution. Al-
though in many systems a small number of collective vari-
ables that capture the main features of the dynamics of
interest can be identified, their choice is often not obvious.?
A poor choice can actually slow down the convergence of an
umbrella sampling calculation because the remaining de-
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grees of freedom can then be very slow in relaxing. One thus
wants to constrain the dynamics with as many order param-
eters as possible to ensure good sampling in those that ulti-
mately prove to be important but at the same time minimize
the computational cost of the simulation. It has been shown
for equilibrium systems that these competing demands can
be met by restricting sampling to the vicinity of a path in a
space of many order parameters. This is the idea of the finite-
temperature string method. > The effective reduction of
the space to one dimension (the arc length along the path)
decouples the computational expenditure from the number of
order parameters originally specified. The path is not known
a priori; rather, it is dynamically evolved during the course
of the simulation.

Here, we exploit the ability of our algorithm14 to enforce
even sampling in a space of an arbitrary number of order
parameters to develop a stringlike method for nonequilib-
rium processes. We illustrate the method by applying it to a
two-dimensional (2D) system consisting of a Brownian par-
ticle in a unidirectional flow on a periodic surface. We then
examine nucleation in an Ising model under “shear;”11 the
configuration of the system is projected onto a set of coarse-
grained coordinates that generalize readily to more complex
systems. The transition mechanism is described and magne-
tization histograms are obtained for several different system
sizes. The relation to other methods, advantages and disad-
vantages of the new algorithm, and the effect of the choice of
order parameters are discussed.

Il. METHODS

In this section, we review pertinent operational features
of the original nonequilibrium umbrella sampling
algorithm'4 and the finite-temperature string method.” For-
malism and additional simulation details can be found in the
original papers. We then combine aspects of the two methods
in a new procedure for restricted sampling of nonequilibrium
steady-state probability distributions.

A. Original algorithm

The essential idea of the nonequilibrium umbrella sam-
pling algorithm is that a separate simulation can be per-
formed in each region if the fluxes into its component states
are known (Fig. 2). The space of order parameters is divided
into regions that form a lattice. To ensure even sampling of
the space, one copy of the system (a “replica” or “walker”) is
confined to each region but otherwise evolves according to
the unperturbed dynamics. During the course of the simula-
tion, two quantities are self-consistently determined: weight
factors (W) that account for the unphysical distribution of
walkers and flux probability distributions (d) that are used to
reinitialize the walkers when they attempt to exit their re-
gion. To break the feedback between these two quantities,
two overlapping lattices are used. Simulations in the first
lattice determine the flux probability distributions of the sec-
ond lattice and vice versa.

We employed two sets of weight factors: a continuously
updated one in which rapid fluctuations were allowed and an



074104-3 Voronoi-based nonequilibrium sampling

orer ] P al

) bl
;&/ﬁL\é q’(e)”;&& - <

FIG. 2. Schematic motivating the original method. (a) An unconstrained
trajectory that passes through four regions that cover a space of order pa-
rameters. (b) Four separate simulations in which the sampling in each region
is the same but the paths are initiated from the incoming fluxes (indicated by
arrows). During the umbrella sampling, there is little communication be-
tween the regions, and the trajectory segments shown can be sampled in any
order. The algorithm self-consistently determines the fluxes and the relative
probability of each region (the weight factor).

WA

averaged one that was used in computing the fluxes. With
every AT,,, we replaced the latter with the average of the
former over the previous time interval:

_ e
W= =2 W GAT n + Tin) W
i=1

where Wﬁ(y ) is the weight of region
k on lattice y and W,((y)(t) is the instantaneous weight of that
region at time z. AT,, is the weight update interval, n is an
arbitrary discretization constant set here to 100, and T, de-
notes the time at the beginning of that sampling interval. The
{W;cy)} are evolved by transferring an incremental amount
between weight variables each time a walker attempts to
leave its region according to

—AWY = AWY) = sWITTY), (2)

B' ™

where B labels the region to which the walker is confined, B’
labels the region to which it attempted to go, A denotes an
additive change, and s is a user-defined parameter chosen to
optimize convergence. The factor T/ T allows the simula-
tions in different regions to be run asynchronously and ac-
counts for the fact that longer simulations allow walkers
more opportunities for escape; T;y) is the time elapsed in
region B and T* is an arbitrary standard that in practice is
chosen to be the time elapsed in a particular region of the
system. In addition to the parameters discussed above, the
rate at which the weights converge to their steady-state val-
ues depends on the quality of the flux distributions.

The technique used to calculate the flux probability dis-
tributions in the original algorithm differs considerably from
that in the algorithm presented here, but we briefly review
the original technique for completeness. In the original algo-
rithm, the regions are subdivided by hand, typically into bins
of equal size. The flux distributions for each lattice are accu-
mulated as histograms over these bins by counting the cross-
ings of interfaces of one lattice by the walkers on the other
lattice [Eq. (4) of Warmflash er al.'*]. When a walker at-
tempts to leave its region, its position in the order parameter
space is reset to one of the bins chosen with probability
proportional to its histogram value [Eq. (3) of Warmflash er
al."]. Once the bin is determined, the remaining degrees of
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freedom are chosen from their joint distribution at that posi-
tion. In practice the latter step is accomplished by storing
complete phase space points at the region boundaries. In the
event that a dynamics that is non-Markovian in the phase
space is employed (e.g., a generalized Langevin equation),
all systematic information needed to continue the trajectory
(e.g., the momenta, systematic forces, and the integral of the
memory kernel) is saved upon an attempted exit and restored
when that trajectory is reinitialized in the neighboring region.

B. String method

In the finite-temperature string method,” % the phase

space is also divided into regions, but instead of a lattice
with the dimensionality of the order parameter space, the
regions are arranged along a one-dimensional string that
winds its way through that space. The computational cost of
the calculation scales linearly with the number of regions
along the string (N;,) but is now independent of the dimen-
sionality of the order parameter space.

There are several versions of the finite-temperature
string method. Here, we describe that of Vanden-Eijnden and
Venturoli,”” which we follow most closely in our own imple-
mentation. The steps of the algorithm are as follows.

(1) Construct an initial path connecting two stable states of
interest (possibly separated by intermediates), typically
by linear interpolation.

(2) Discretize the path with points (images) uniformly
spaced in arc length.

(3) Sample the phase space by simulating the dynamics of
replicas constrained to remain in the vicinity of the im-
ages defining the path. Vanden-Eijnden and Venturoli®
did this by infinite square-well confinement to Voronoi
polyhedra defined by associating each point in the order
parameter space with the image closest to it. Symboli-
cally,

Qi = {e(x)|Dlx = mln{DJx}}’ (3)

where (); denotes the ith polyhedron, x is a point in
phase space, the function €(x) returns the position in
the order parameter space given x in the full space, j is
an integer in the range 1=j=N,,, and D,, is the dis-
tance between the point 6(x) and the ith image,

D= ||Zi— 6(x)|, (4)

where z; is the position of image i. Note that both z; and
0(x) are vectors with the dimensionality of the order
parameter space and |-|| denotes the Euclidean norm.
For systems that satisfy detailed balance, the infinite
square-well confinement can be enforced by simply re-
jecting moves that lead out of a region in Monte Carlo
simulations or reflecting the momenta in molecular dy-
namics simulations.”

(4) Update the string by moving the images individually
using the results of the simulation in step (3). This is
done using a three-part procedure.

(a) The images are moved toward the average positions of
the replicas (6(x;)) according to
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2 =7+ m(6(x)) - 2)), (5)

where z; is the position of image i before the move-
ment, 7is a parameter between 0 and 1 controlling the
rate of the image movement, and

Tf/Ar

20 k). (6)

=

(6(x) =

where x;(7) is the position of replica i at time 7, Az is a
small time interval comparable to the decorrelation
time of the system, and T, is the time at the end of the
sampling period.

(b) The string is then smoothed according to

Z?'E = K(Z,T+1 + Z;r—l -2z)), (7)

where « is a positive parameter that controls the
strength of the smoothing.

(c) Finally, the string is reparametrized such that the im-
ages are spaced equally in arc length to ensure even
sampling along the path. The new position of image i is
determined by first finding the index j such that

J 1 J+1
E Dk 1< (ﬁ)Dtol < E Dkk—l’ (8)

where Ny, is the number of images, D,ik_ | 1s the dis-
tance between image k and image k—1 before reparam-
etrization as calculated in the order parameter space,
DJI’ 0=0, and D, is the total distance along the strlng
Image i is then placed at position zf between z and 7 §
according to

Z{=Z}t+(Zji'+1 +)|:<N 1) Do - EDkk—] ©)

Without the reparametrization step, the images tend to
drift toward the stable states, and the transition states
become sampled less frequently.

(5) Go to step (3).

The loop is iterated until the path stops changing within
the desired level of precision. As discussed in more detail
elsewhere®*?® the efficacy of the method relies on the order
parameters being able to describe the transition sufficiently
well and, relatedly, the most probable transition paths being
largely confined to a tube in the space of order parameters. It
is not always obvious whether these conditions are satisfied
for a given system and choice of order parameters, as we
illustrate in the Appendix. In particular, for nonequilibrium
processes, it is not guaranteed that the most probable forward
and backward paths overlap (e.g., Ref. 6), and it could be
necessary to define separate strings for each direction of the
transition. For the examples considered here, the overlap be-
tween the forward and backward paths is sufficient that this
issue can be neglected.

J. Chem. Phys. 130, 074104 (2009)

C. Nonequilibrium Voronoi-based sampling procedure

The algorithm introduced here uses the general outline
of our previous nonequilibrium sampling method.'* The or-
der parameter space is covered with regions and a walker is
placed in each. The regions are Voronoi polyhedra that are
defined by images along a path that winds its way through a
high-dimensional order parameter space as in the string
method.” In analogy to the two overlapping lattices in the
original algorithm, two strings are employed. The first string
has N;,, images, and the images of the second string lie at the
midpoints of the line segments connecting successive images
of the first string.

The flux probability distributions and weights of the re-
gions are determined self-consistently. We update the
weights as in the original algorithm [Eq. (1)], except that we
reinitialize the instantaneous weights to their averages each
time the averages are updated. The flux distributions, how-
ever, are sampled in a different fashion. Here, the sampling
regions are irregularly shaped and, as the path evolves, their
sizes, shapes, and connectivities change. Thus the flux distri-
butions cannot be accumulated as histograms with equally
sized bins as in Ref. 14. Instead, we randomly sample the
probability density for the walker in region B on lattice k to
be reintroduced at the point x in the full space, q)g()(x):

)= X Wy -x)/Zy. (10)
te]F(k)
where Fg‘) is a list of entry points for region B on lattice k

that are accumulated using simulations on lattice [ #k (k,!
=1,20r2,1), Wﬁ}l;(i) is the weight of the region bg(i) on
lattice [ where bg(i) is an indicator function that returns the
region in which point i was recorded, S(x—x;) selects the
points with the x value of interest, and

Z 2 Wg(l)é‘(x x;)dx (11)

Q15’ te]l'

is a normalization factor. The weights are updated simulta-
neously, and in Eq. (10) we use the value of WL[;([) at the time

that the crossing was recorded. To reinitialize the walker af-
ter an attempted exit, a p01nt is chosen from Jk ) with likeli-
hood proportional to <I> (x) and since x fully defines the
system, no further coordmates need to be determined. In
practice, Fg‘) is a list of N}, phase space points in which the
oldest entries are overwritten once the list is full. If early in
the simulation ]F'gc) does not yet contain any entries, we reini-
tialize the replica to the position of the image, but other
choices might be preferable in specific systems. Because
there are typically a relatively small number of images,
boundary crossings between regions can be detected simply
by monitoring the distance of each walker from the images.

After a specified length of time (7,,..), the average po-
sition of each replica is determined, and the images of the
first string are moved toward their average positions accord-
ing to Eq. (5); the string is then smoothed and reparametrized
by applying Egs. (7) and (9). The images of the second string
are then placed at the midpoints of the line segments con-



074104-5 Voronoi-based nonequilibrium sampling

(a)

SAhdbonvro®

Shdbonvro®

J. Chem. Phys. 130, 074104 (2009)

8
6
4
_— 2
s, >
ey 4
= -4
-6

X

1

(d) 8
0.8 & = 2
e 0
. [IE Mu_\%y 7
e ‘ -4
-6

L

-05 -04 -03 -02 -0.1 0 0.1 0.2

FIG. 3. (Color) Plots from the 2D periodic model illustrating features of the algorithm. (a) A path of 11 images (circles) is shown with their associated Voronoi
polyhedra, outlined in black. (b) The images from (a) are moved and new regions are defined. (c) The path is reparametrized such that the images are
equidistant, but it is otherwise unchanged. (d) The images and Voronoi polyhedra of the second string are superimposed on (c) and shown in white; by
definition, the images in the second set lie on the boundaries of the first. In all plots, the colors indicate an effective potential surface accounting for a driving

force, and the scale bar is in units of k7.

necting successive images of the first string. After the strings
are modified, the regions are changed and the flux lists are no
longer valid. From each list, we remove only the points that
are no longer contained by the corresponding region. Selec-
tively (rather than completely) pruning the lists speeds con-
vergence because the errors introduced are typically small
when the images do not move too much and are mitigated by
continually refreshing the lists. The evolution of the string is
illustrated with a 2D system in Fig. 3.

D. Summary

In summary, our algorithm proceeds as follows. A set of
points (images) in the order parameter space is initialized
arbitrarily (typically, the initial and final states are linearly
interpolated); these images form the first string. A second
string is created by placing images at the midpoints between
the segments connecting successive images of the first string.
The images of each string define Voronoi polyhedra that
cover the entire order parameter space (an irregular lattice).
A separate simulation is run in each region, during which
crossings of the boundaries on the other lattice are recorded.
In this fashion, flux lists (Fg()) are built for all regions on
both lattices. These lists contain all of the observed entry
points and their corresponding weights. Once a replica tries
to leave its own region B and enter a region B’, the weights
are updated by an additive transfer as in Eq. (2). The replica
is then reinitialized at xeF\ with probability density
@g‘)(x) given by Eq. (10). After T, steps, the first string is
updated as in Egs. (5)—(9). The second string is moved by

again placing its images at the midpoints between the seg-
ments connecting successive images of the first string. The
flux lists are pruned, and sampling is continued. In practice,
we divide the simulation into two phases (I and II). Phase I
follows the outline immediately above and continues until
the path stops changing significantly. In phase II, the posi-
tions of the images are frozen (7,,,..— ) and {Wg‘)} and
{q)gc)(x)} are determined more accurately. Fixing the images
is necessary for complete convergence of the weights and
fluxes since the values of these quantities depend on the defi-
nitions of the regions.

lll. EXAMPLE I: PERIODIC 2D SYSTEM

To illustrate the method, we first apply the nonequilib-
rium Voronoi-based sampling procedure to a periodic 2D
system where the potential surface is defined by

Vix,y) = ‘y[x - %Sin(277'y)]2 + a cos(2my), (12)

where x and y are the spatial coordinates and y and « are
adjustable parameters. In addition to the potential, the dy-
namics are determined by a constant external force in the y
direction (F.=Fy). The system thus evolves according to
the equation of motion:

r(r+ &) =r(t) - mi;(VrV— F..) + orC, (13)

where &t is the numerical integration time step, or® is a noise
term with components chosen randomly from a Gaussian
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TABLE I. Parameters used in the umbrella sampling algorithm for the pe-
riodic 2D potential.

Common Rare

Phase I Phase II Phase 1 Phase 1T
T/ 6t 1X10° 1X107 2X10° 1X107
Tnove! OF 10 000 0 10 000 0
Niist 8 000 8 000 8 000 8 000
N; 10 10 30 30
T/ Ot 10 000 10 000 10 000 10 000
s 5x107* 5x 107 5x 107 5x 107
T 0.1 e 0.1
At/ ot 10 e 10
K 0.1 e 0.3

distribution with zero mean and variance 2D&t, and r
=(x,y). D is the diffusion coefficient, which is related to the
friction coefficient ¢ and the inverse temperature 8 by D
=(mBE". We restrict y € [0, 1) with periodic boundary con-
ditions. The constant force creates a unidirectional flow
through the system, which drives it out of equilibrium.

For the results presented here, y8=6.0, 6r=0.005, &
=3.0, and F=4.8. Two different values of the depth of the
cosinusoidal contribution to the potential (@) are used: one
where transitions are common (@B=3.0) and another where
transitions are rare (a8=6.0). There are a number of differ-
ent parameters associated with the umbrella sampling algo-
rithm: 7 is the total time of the simulation for each region,
Tove 18 the string update period, Ny is the size of the flux
list, N, is the number of images used, T, is a parameter
controlling the weight averaging, s is the weight transfer pa-
rameter defined in Eq. (2), 7 is the image movement param-
eter given in Eq. (5), At controls the discretization of the sum
in Eq. (6), and « is the smoothing parameter defined in Eq.
(7). The values of these parameters are given in Table I for
the different cases and simulation phases. In each simulation,
the string is initialized with its images equidistant along
the y axis and phase I runs until the path stops changing
significantly.

Figure 4 shows a converged configuration of the string
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FIG. 5. Projections onto the y axis for the 2D periodic system. Each curve
is an average of ten independent simulations. The conventional simulations
(CONV) were initialized in the basin r=(0.0,0.5) and integrated according
to Eq. (13) for 1.5 10® steps for the @8=3.0 case in which transitions are
common and 1.0X 10° steps for the @8=6.0 case in which transitions are
rare. Details of the umbrella sampling simulations (UMB) are given in
Table 1.

and the Voronoi polyhedra. To evaluate the sampling, we
examine projections of the steady-state distribution onto the
y axis, which measure the relative probability of the system
being in the basin (around y=0.5) to the transition state (y
=0 and y=1) (Fig. 5). These projections are constructed by
summing the contributions from different regions according
to their weight. Good agreement with long conventional
simulations is obtained for both the choices of a. We mea-
sure error by the difference between the accumulated y-axis
projections and target histograms on a logarithmic scale:

n 1/2
1
error=| — > El2 (14)
s

and

FIG. 4. (Color) The 2D potential sur-
face [Eq. (12)], accounting for the ex-
ternal force, with the parameters for
which transitions are common. A path
of 20 images and its Voronoi polyhe-
dra is superimposed. The images are
shown in black. For each region, a
random sample of 500 points is shown
in white or light blue. The scale bar is
in units of k7. See text for parameters.
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FIG. 6. Convergence of the projections in Fig. 5 as measured by the error
defined in Eq. (14) for (a) the aB=3.0 parameter set and (b) the aB=6.0
parameter set. Both the conventional and umbrella sampling errors shown
are averages over individual error curves obtained from ten independent
simulations. The time for the umbrella sampling plots includes the path
evolution time and it is the total time for all regions on both lattices. The
error for the umbrella sampling algorithm is calculated by averaging the y
axis projections starting 1.0X 10° steps after the start of phase II in both
cases to exclude early inaccurate results from the averages. In the “com-
mon” case, the target histogram is built using a single conventional simula-
tion of 1.5X 10° steps. In the “rare” case the target histogram was an aver-
age of ten conventional simulations, each of 1.5X10' steps. The target
simulations were independent of those used to calculate the error of the
conventional simulations.

log P(i) —log P,(i) for P(i) # 0 s
" |log 1/T-log P(i) for P(i)=0, (15)
where P is the y-axis projection that is discretized into n
evenly spaced windows from O to 1 (here = is set to 100), P,
is the target histogram, and 7 is the total time of the simula-
tion. The special case for P(i)=0 is introduced to avoid in-
finite errors when y-axis projections are incomplete. This
choice only impacts the conventional efficiency curves, since
the umbrella y-axis projections span [0,1] almost immedi-
ately. The error is determined using (log P(i)—log P,(i))
rather than (P(i)—P,(i)) to emphasize low probability re-
gions of the y-axis histograms, which are the most difficult to
sample. Figure 6 compares the convergence of simulations
with the ¢=3.0 and the a3=6.0 parameter sets. It is seen
that for the a3=3.0 case conventional sampling is sufficient,
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(@) (b)

FIG. 7. A lattice of 8 X8 Ising spins before and after the coarse-graining
procedure. (a) The full state of the system, with the black squares represent-
ing 0;;=—1 and the white squares representing o;;=1. (b) The corresponding
coarse-grained representation as defined in Eq. (19).

but in the a3=6.0 case conventional sampling requires five
to ten times more steps than the umbrella sampling algorithm
to converge to the same level of precision.

IV. EXAMPLE II: THE ISING MODEL UNDER SHEAR

Although 2D systems are useful for the purpose of visu-
alization, they are not the targets of the method introduced in
the present work. Effective projection of the dynamics onto
the one-dimensional string does not provide a large boost in
computational efficiency because the space is already small.
Moreover, in a 2D system the mechanism for transition is
straightforward and appropriate order parameters can be eas-
ily found. We thus now consider a many-dimensional ex-
ample that better demonstrates the strengths of the method.

To this end, we study the kinetics of a 2D Ising model
with nearest neighbor interactions. The system is composed
of a square lattice of L X L sites, at each of which there is a
binary variable (spin). We denote the spin at row i and col-
umn j by oy;; o;==1 or 1. The Hamiltonian of the (micro-
scopically reversible) system is

L L
H({Uij})=—JE UijUkz—hEEUi', (16)

(ij k) i=1 j=1

where J is the coupling constant between the spins, 4 is a
uniform external magnetic field, and (ij,kl) restricts the sum
to nearest neighbors on the lattice. Intuitively, there are two
stable states in this system: one with most of the spins
pointed up (o;;=1) and one with most of the spins pointed
down (0;;=—1). The overall state of the system can be char-
acterized by the magnetization

1LL
=p22qﬁ (17)

i=1 j=1

We study the mechanism of transition between the M =~ -1
and the M = 1 states under shear with periodic boundary con-
ditions. We define the elementary dynamics for consistency
with Allen ef al." Namely, we flip a single spin in each
Monte Carlo move and accept the change with probability

P} — {o}') = minfe A Hedl 1y (1)

where {o7;} and {o;;} are the configurations of the system
before and after the spin flip, respectively. In this scheme, M
is not conserved. Shear is simulated as in Ref. 11 but altered
to subtract the average velocity field. This alteration is made
so that the average configuration associated with each image
can be more clearly determined. Shear moves are conducted
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FIG. 8. The evolution of the path over the course of the simulation for the
Ising model under shear with L=16. From top to bottom, the plots show the
state of the path at 0%, 8%, 20%, and 100% of the phase I simulation length.
The parameters used to generate the paths are given in Tables II and III.

after every cycle (L X L steps) by choosing a row (r) at ran-
dom. Assuming for convenience that L is even, if r>L/2
then all rows above that row are shifted to the right by one
lattice site with probability Pg,. If r=L/2 then all rows be-
low that row are shifted to the left by one lattice site with
probability Pg,. L shear moves are attempted after each
cycle. We use the value Pgy,=0.02 for all simulations below.
Lees-Edwards boundary conditions™' are enforced through
the nearest neighbor lists at the top and bottom rows.

As mentioned in Sec. II B, the efficacy of string-based
methods is dependent on the transition paths being limited to
a tube in the order parameter space. This localization condi-
tion is trivially violated by many order parameter choices if
there is translational invariance in the system. To remove this
degeneracy, we introduce four fixed spins in the center of the

(a) image index

row
o = N W~ 00O N

0 2 4 6 8 10
(b) image index

J. Chem. Phys. 130, 074104 (2009)

lattice: 072 10=012.1241= O 241.02= 0 241.00+1= 1. These
spins seed the forward transition. To keep the original sym-
metry between “up” spins and “down” spins, we introduce
four fixed spins at the corners of the lattice: o ;=07
=0y =0y,;=—1. With h=0, the forward transition and the
backward transition are equally probable, and the constraint
that the probability of magnetization is symmetric about M
=0 can thus serve as an additional error check. To keep the
clusters intact, we do not shear between y=L/2 and y=L/2
+1 or at the periodic boundary in y. Note that the two clus-
ters move with respect to one another as shear is applied. The
localization condition discussed above (termed “the string
assumption”) and its relation to the convergence of the
method presented here are further discussed in the Appendix.
A previous application of the string method to Ising sys-
tems used local magnetizations over regions of spins as the
order parameters.28 Here, we base the umbrella sampling on
local magnetizations of the rows of the lattice (Fig. 7):

L
M=S o (19)
L
where i indexes the columns of the lattice. {M} is invariant
to shear moves. Figure 8 shows the evolution of the path for
L=16 from a linear interpolation to its final form. The
changes are most visible in the middle of the path, where
M=0. In Fig. 9, we compress the information from one
snapshot of the lattice in Fig. 8 into one column (a particular
image index) and show examples of converged transition
paths in the order parameter space for L=6, 8, 12, and 16.

12
1
10
0.5
8 0
2 6 0.5
-1
4
2
0
0 5 10 15 20 25
(c) image index
1
0.5
0
-0.5

0 10 20 30 40 50
(d) image index

FIG. 9. Examples of converged paths for different Ising system sizes. From (a) to (d), the system sizes are L=6, 8, 12, and 16. The parameters used to obtain

these paths are given in Tables II and III.
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TABLE II. Parameters used for the Ising model simulations regardless of
the value of L.

Parameter Value
BJ 0.65
Bh 0.00
Py, 0.02
Niyigt 5000
s 0.005
T 0.1
At/ ot 200
K 0.4

The parameter sets used to obtain these paths are given in
Tables II and III. Each plot shows the progression of the
order parameters along the path. For all the plots, the left-
most image is mostly composed of down spins with a gray
band in the middle that reflects the fixed up spins. As the
image index increases, the gray band becomes more pro-
nounced and spreads out until most of the spins are up, ex-
cept for those fixed down at the top and bottom.

The actual structures associated with each image need
not be homogeneous across each row. To give the reader a
better sense of these structures, we calculate the average con-
figuration of the walker associated with each image (Fig. 10).
These averages reveal the general mechanism for transition,
which is an enlargement of the central cluster until it spans
the lattice in the direction of the applied shear, followed by
growth perpendicular to the shear. This mechanism is con-
sistent with structures observed in other simulation
studies.'*

To quantify the convergence, we project the sampled
steady-state distribution, which is a function of L order pa-
rameters, onto the total magnetization of the system (M).
The probability of magnetization is obtained by summing
magnetization histograms for each image in proportion to its
weight. Figure 11 shows the probability of magnetization for
L=6, 8, 12, and 16 as computed by the umbrella sampling
algorithm. For L=6, 8, and 12, we compare the results from
the umbrella sampling with ones from conventional simula-
tions. For L=16, conventional simulations become unfea-

= |
BOOC—_ .

[0 [#]8 ]88 6|60 u————
e e e e e e |

- [ # | @@ @ @) —————
e e e

FIG. 10. Average configurations associated with the images for different
Ising system sizes. From top to bottom, the system sizes are L=6, 8, 12, and
16. For the L=16 simulations, there are 50 images and only every other
image is shown.

J. Chem. Phys. 130, 074104 (2009)

0.1
0.01
0.001
1e-04
1e-05

Probability

1e-06
1e-07
1e-08

!

1e-09 L L L L L L L L
1 -08 -06 -04 -02 0 02 04 06 08 1

Magnetization

FIG. 11. Comparison of probability of magnetization curves obtained by the
umbrella sampling algorithm and references for different Ising system sizes.
For L=6, 8, and 12 the conventional Monte Carlo sampling is used as a
reference, while for L=16 a one-dimensional implementation of the um-
brella sampling algorithm is used. The reference results are shown with lines
and the umbrella sampling algorithm with symbols. From top to bottom, the
system sizes are L=6, 8, 12, and 16. The magnetization curves for the
umbrella algorithms are time averages starting once the weights have con-
verged to their steady-state values and continuing until the end of the simu-
lation. The parameters used in these simulations are given in Tables II and
III. All curves (except for the one-dimensional implementation) are the av-
erage of ten independent simulations. For each of the conventional simula-
tions, we used 1 10% steps for L=6 and 8 and 1 X 10 steps for L=12. For
the one-dimensional umbrella sampling simulations with L=16, T=3
X 1088t, Nipy=30, Nyj=5000, Ny,=200,000, s=0.005, and Ar=206t.

sible, and we compare with the output of the original um-
brella sampling algorithm14 with M as the only order
parameter and equal spacing of the interfaces. The algorithm
differed slightly from that in the original study in that Eq.
(10) was used for the flux distributions.

For L=12 and 16 we used a larger number of images in
phase II than in phase I (Table III). Although a large number
of sampling regions facilitate convergence of the weights and
fluxes, the configuration of the path can be determined effi-
ciently using a smaller number of images. Indeed, we found
that in general, during the optimization, paths stabilized well
before the steady-state distribution itself was accurate. Con-
versely, good projections onto the magnetization could be
obtained even if the paths from phase I varied somewhat
from one simulation to another simulation. In these regards,
it is also worth noting that the visual appearance of the path
was much more robust to alternate choices of order param-
eters than was the probability of magnetization, as discussed
in the Appendix.

Each of the ten umbrella sampling runs took approxi-
mately 1.0, 1.5, 17, and 45 h of central processing unit
(CPU) time for L=6, 8, 12, and 16, respectively, on a 2.2
GHz AMD Opteron processor, but these timings depend on
the choice of N;,,. As a comparison, conventional simulations
for L=16 were run for 2X 10'? steps, requiring 262 CPU
hours and failed to produce results of similar quality to those
obtained using the umbrella sampling algorithm. While the
Ising system is better suited for the stringlike method than
the 2D model considered above, it is still sufficiently simple
that the overhead associated with the algorithm dominates
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TABLE III. Parameters that varied with L for the Ising model simulations.

L Phase Nim Tpove! O AT,/ 6t T/ 6t
6 I 6 10 000 20 000 2X10°
n 6 e 20 000 1% 107
8 I 10 10 000 20 000 2Xx10°
Il 10 o 20 000 2% 107
12 1 10 50 000 20 000 5% 100
I 25° e 200 000 2% 108
16 I 10 100 000 200 000 5% 109
II 50° o 200 000 2X108

“Between phase I and phase II, the number of images was increased using linear interpolation.

the simulation time, at least for these lattice sizes. We thus
expect the comparative advantage of the umbrella sampling
to be even greater for more complex systems.

V. DISCUSSION

Here we have introduced a quasi-one-dimensional non-
equilibrium umbrella sampling algorithm for application to
large order parameter spaces. It works by evolving a collec-
tion of images that when put together form a string that
winds through the order parameter space from a reactant re-
gion to a product region. The images are evolved using time-
averaged statistics of walkers, which are separate simulations
confined to the Voronoi polyhedra defined by the images. In
this way, the algorithm focuses sampling on the transition
tube connecting the initial and final states. It is basically an
extension of our previous work,"* with the string acting as a
convenient way to establish sampling regions in phase space.
The primary change to the sampling component of the algo-
rithm was a streamlined means of determining the fluxes into
each region. Computation time still scales linearly with the
number of replicas, but now those replicas can be allocated
more efficiently.

Fundamentally, both the original and stringlike versions
of nonequilibrium umbrella sampling are based on accumu-
lating statistics of paths leading from one interface in a space
of order parameters to another. There are now several meth-
ods of this general nature, and all share certain features. At
the same time, they differ in detail and, as a result, applica-
bility. Most other algorithms were designed for obtaining
rates for transitions between two attractors. They have the
advantage over our algorithms that they can determine a rate
for one direction of a process without a well-defined steady
state (e.g., see Ref. 12). On the other hand, our methods are
designed for enhanced sampling of the steady-state probabil-
ity distribution, the analog of the free energy for irreversible
systems. The iterative nature of the algorithms makes them
robust to errors that arise early in a simulation, and they can
be applied to the wide range of problems in which a steady
state exists but there is no transition with a separation in time
scales between the dynamics within and between stable
states.

The earliest interface-based algorithm for molecular sys-
tems of which we are aware is the weighted ensemble
method.*?* The method works by simulating an ensemble of
particles, each carrying a probability. The particles can clone

themselves (giving half of the probability to each copy) or
merge with other particles (combining their probability). Par-
ticles are cloned in low probability regions and merged in
high probability regions to obtain a more even sampling
along a progress coordinate that connects the initial and final
states. Although introduced to study systems in equilibrium,
this method can be used to study nonequilibrium ones as
well. Indeed, the “branched growth” version of FFS (Ref. 7)
is essentially equivalent to it; FFS is discussed in Sec. I.
Since we introduced our original nonequilibrium umbrella
sampling algorithm,l4 we became aware of a similarly
named method®”° that ratchets the system forward like FFS.
This unidirectional procedure fails to produce an accurate
steady-state distribution for the reasons discussed by Valeri-
ani et al.’ in justifying the need for two FFS simulations.

In the transition interface sampling37’38 and milestoning
methods,** ™' the sampling assumes microscopic reversibil-
ity. These methods are thus inapplicable to the class of sys-
tems considered in the present study. In particular, in pub-
lished versions of milestoning, systems are initiated from the
interfaces with Boltzmann weighting to maximize parallel-
ization. In contrast, nonequilibrium umbrella sampling does
not assume a particular distribution on the interfaces a priori.
That said, one could view the nonequilibrium umbrella sam-
pling method as an expanded form of milestoning in which
the statistics of the trajectories are used to improve the dis-
tributions on the interfaces iteratively to capture deviations
from equilibrium and obviate the loss of memory assump-
tion. However, rates can be calculated exactly by combining
the trajectories obtained piecewise in nonequilibrium um-
brella sampling rather than approximately through interface-
to-interface passage times.”

All of the above methods assume a fixed set of locally
nonintersecting interfaces defined by their spacing along a
single coordinate. Their efficiencies thus depend sensitively
on the choice of that coordinate. Our nonequilibrium um-
brella sampling algorithm enables one to constrain the sam-
pling with an arbitrary number of order parameters. In the
present study, we exploited this feature to introduce a string-
like approach to improve the interfaces. Such an approach is
expected to be especially important for systems with com-
plex compositions such as biomolecular ones, where manual
selection of a progress variable for a reaction is often very
challenging. The ability to constrain the sampling with an
arbitrary number of order parameters could also facilitate
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bridging between separate reaction channels to obtain their
relative probabilities (see Ref. 43 for progress in this regard
for reversible systems).

The FFS-LSE (for “least-squares estimation”) method is
an alternate approach introduced recently for selecting
interfaces.'” The method builds on the idea first introduced
by Ma and Dinner” and subsequently refined by Peters et
al.** (see Methods in Ref. 46 for discussion) that statistical
methods can be used to identify physical variables that cor-
relate with a representative set of precalculated stable-state
commitment probabilities (commitors). In the FFS-LSE
method, the commitors are approximated in terms of quanti-
ties accumulated in FFS simulations, and these estimates are
then fitted with linear combinations of physical variables to
identify improved interfaces. Borrero and Escobedo'® se-
lected the parameters manually, which limits the number of
order parameters that can be considered, but more sophisti-
cated methods have been demonstrated to enable the efficient
search of combinations of thousands of order parameters
(without the need for repeated calculation of commitors or
the so-called histogram test, contrary to the statements in
Refs. 10 and 44).** Such statistical approaches are comple-
mentary to that taken here, and it will be interesting to ex-
plore whether they can be combined to advantage. Because
statistical approaches are likely to be sensitive to the quality
and distribution of the commitor estimates, we expect string-
like methods to be more effective for the initial determina-
tion of the path when little is known about a mechanism;
statistical approaches could be useful though for interpreting
the path and accelerating convergence of additional quanti-
ties (e.g., rates).

While the present study represents an important first step
toward being able to treat reactions in complex, heteroge-
neous irreversible systems, some advances in the details of
implementing the algorithm are likely to be required for re-
alizing this goal. Larger systems will require that the lists of
saved boundary points be written to disk rather than carried
in memory. Care will be required to prevent the overhead
associated with accessing the lists from becoming prohibi-
tively computationally costly. For the simulations in the
present study, the limiting feature of the algorithm was the
redistribution of the weights between high and low probabil-
ity regions. We are thus also investigating whether schemes
based on solution of an overall balance condition can accel-
erate convergence.

In closing, it is important to note that, in the present
study, the string serves only as a means of restricting sam-
pling of the steady-state distribution to the most important
parts of the order parameter space. The dynamical meaning
of the string itself is imprecise. Recently, a stringlike method
for treating nonequilibrium processes that can be character-
ized by a Landau—Ginzburg-like action has been introduced
and applied to modeling nucleation under shear.” It will be
interesting in the future to explore whether such an approach
can be combined with the more general sampling algorithm
presented here to improve the interpretation of the path.

J. Chem. Phys. 130, 074104 (2009)
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FIG. 12. A representative path obtained with the box order parameters {B;;}
defined in the Appendix. This path has L=16, N,=8, and N;,,=30.
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APPENDIX: CHOICE OF ORDER PARAMETERS

Here we discuss the effect of the choice of order param-
eters on the convergence of the system by examining the
Ising model with periodic boundary conditions using a dif-
ferent set of order parameters:28

N 2L/NbUX L/Nyoy
n box n
Bij = E E Ors

Al
L a=1  B=1 &
where
N
k=(l—1)(Nb0x)+a,
(A2)
N
R

1 =i, j=Nyo. and n is the image index. All B;; are between
—1 and 1, and the dimensionality of the order parameter
space is Now (Npox X Npox). In summary, each image is di-
vided into Ny, X Ny coarse-grained boxes, each containing
(L/Nyyy)? spins. We will refer to this choice of order param-
eters as the “box” representation and the set of order param-
eters in the main text as the “stripe” representation.

In comparison with the simulations in the stripe repre-
sentation, the paths now contain more information, and we
can immediately visualize the path (Fig. 12). We found that
this set of order parameters is able to reproduce the results
shown above for L=6 and 8, but for higher values of L we
were unable to converge to the correct steady-state distribu-
tion even for large numbers of images. This is interesting
since (as is seen in Fig. 12) for much of the path, there is not
much variation in B;; along the row (in the direction of the
applied shear), and intuitively there should not be such a
difference between the results obtained using the two differ-
ent sets of order parameters. Nonetheless, there are key dif-
ferences between the two sets of order parameters that war-
rant further discussion.

We observed that there are a larger number of transitions
between regions that are not adjacent in image index (non-
local transitions) in the box representation than in the stripe
representation. With all other parameters held constant (L
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=16, k=04, N;,=50), nonlocal transitions account for
20(*3)% of the total using {B;;} and 2.1(+0.6)% of the total
using {Mj} (error estimates are the standard deviation over
ten independent trials in each case). Nonlocal transitions can
have a destabilizing effect on the convergence of the algo-
rithm since they can correspond to transitions between re-
gions with drastically different weights. Consider two re-
gions, A and B, that are adjacent in phase space, where W,
(the weight of region A) >Wj. If a transition occurs from A
to B, then Wy will increase by sW,, which could be an in-
crease of several orders of magnitude. This makes Wy sensi-
tively dependent on the flux function in region A and can
inhibit convergence to steady state. Successive regions in
image index can be ensured to have weights that are not
drastically different by manipulating the parametrization of
the path (image spacing), while spatially adjacent regions
that are separated in image index cannot. This makes nonlo-
cal transitions problematic.

It is interesting to note that the assumption that the ma-
jority of the reactive flux is concentrated in the neighborhood
of the string in the space of order parameters (the string
assumption) is equivalent to the assumption that the majority
of transitions are local. This assumption has been previously
specified as requiring the width of the transition tube to be
small compared with the radius of curvature of the string.24
The latter quantity is approximately equal to the distance
between the string and the points at which the Voronoi
boundaries meet. As nonlocal transitions are only possible if
the reactive flux extends further than the point at which the
Voronoi boundaries meet, we can see that the percentage of
nonlocal transitions is a good way to measure violations of
the string assumption.

'D. I. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium
Liquids, 2nd ed. (Cambridge University Press, New York, 2008).

*M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, New York, 1987).

*D. Frenkel and B. Smit, Understanding Molecular Simulation: From Al-
gorithms to Applications (Academic, London, 2002).

*B. D. Todd and P. J. Daivis, Mol. Simul. 33, 189 (2007).

D.T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).

‘R. I. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett. 94,
018104 (2005).

"R.T. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 024102
(2006).

SR.T. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111
(2006).

°c. Valeriani, R. J. Allen, M. J. Morellia, D. Frenkel, and P. R. ten Wolde,
J. Chem. Phys. 127, 114109 (2007).

J. Chem. Phys. 130, 074104 (2009)

B, E. Borrero and F. A. Escobedo, J. Chem. Phys. 127, 164101 (2007).

UR. 7. Allen, C. Valeriani, S. Tanase-Nicola, P. R. ten Wolde, and D.
Frenkel, J. Chem. Phys. 129, 134704 (2008).

"2R. P. Sear, J. Chem. Phys. 128, 214513 (2008).

3], Juraszek and P. G. Bolhuis, Biophys. J. 95, 4246 (2008).

A, Warmflash, P. Bhimalapuram, and A. R. Dinner, J. Chem. Phys. 127,
154112 (2007).

'5A. Warmflash and A. R. Dinner, Proc. Natl. Acad. Sci. U.S.A. 105,
17262 (2008).

1G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

p, Chandler, Introduction to Modern Statistical Mechanics (Oxford Uni-
versity Press, New York, 1987).

M. Maienschein-Cline, A. Warmflash, and A. R. Dinner (unpublished).

R, S. Maier and D. L. Stein, Phys. Rev. E 48, 931 (1993).

2R. S. Maier and D. L. Stein, J. Stat. Phys. 83, 291 (1996).

! G. E. Crooks and D. Chandler, Phys. Rev. E 64, 026109 (2001).

22A. Ma and A. R. Dinner, J. Phys. Chem. B 109, 6769 (2005).

Bw. E, W. Ren, and E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688
(2005).

2w, Ren, E. Vanden-Eijnden, P. Maragakis, and W. E, J. Chem. Phys. 123,
134109 (2005).

Bw, E, W. Ren, and E. Vanden-Eijnden, Chem. Phys. Lett. 413, 242
(2005).

L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, J. Chem.
Phys. 125, 024106 (2006).

T, F. Miller, E. Vanden-Eijnden, and D. Chandler, Proc. Natl. Acad. Sci.
U.S.A. 104, 14559 (2007).

BM. Venturoli, E. Vanden-Eijnden, and G. Ciccotti, J. Math. Chem 45, 188
(2009).

»E. Vanden-Eijnden and M. Venturoli, “Revisiting the finite temperature
string method for calculation of reaction tubes and free energies,” J.
Chem. Phys. (in press).

30 A. C. Pan, D. Sezer, and B. Roux, J. Phys. Chem. B 112, 3432 (2008).

3UA. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972).

M. Heymann and E. Vanden-Eijnden, Phys. Rev. Lett. 100, 140601
(2008).

33G. A. Huber and S. Kim, Biophys. J. 70, 97 (1996).

#*B.wW. Zhang, D. Jasnow, and D. M. Zuckerman, Proc. Natl. Acad. Sci.
U.S.A. 104, 18043 (2007).

BR. Blaak, S. Auer, D. Frenkel, and H. Lowen, Phys. Rev. Lett. 93,
068303 (2004).

%R. Blaak and H. Lowen, Comput. Phys. Commun. 169, 64 (2005).

1T, S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118, 7762
(2003).

3D. Moroni, P. G. Bolhuis, and T. S. van Erp, J. Chem. Phys. 120, 4055
(2004).

% A. K. Faradjian and R. Elber, J. Chem. Phys. 120, 10880 (2004).

“D. Shalloway and A. K. Faradjian, J. Chem. Phys. 124, 054112 (2006).

*A. M. A. West, R. Elber, and D. Shalloway, J. Chem. Phys. 126, 145104
(2007).

42 A. Warmflash, A. Dickson, and A. R. Dinner (unpublished).

“T.S. van Erp, Comput. Phys. Commun. 179, 34 (2008).

“B. Peters and B. L. Trout, J. Chem. Phys. 125, 054108 (2006).

$B. Peters, G. T. Beckham, and B. L. Trout, J. Chem. Phys. 127, 034109
(2007).

o7, Hu, A. Ma, and A. R. Dinner, Proc. Natl. Acad. Sci. U.S.A. 105, 4615
(2008).


http://dx.doi.org/10.1080/08927020601026629
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/10.1103/PhysRevLett.94.018104
http://dx.doi.org/10.1063/1.2140273
http://dx.doi.org/10.1063/1.2198827
http://dx.doi.org/10.1063/1.2767625
http://dx.doi.org/10.1063/1.2776270
http://dx.doi.org/10.1063/1.2981052
http://dx.doi.org/10.1063/1.2928844
http://dx.doi.org/10.1529/biophysj.108.136267
http://dx.doi.org/10.1063/1.2784118
http://dx.doi.org/10.1073/pnas.0809314105
http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1103/PhysRevE.48.931
http://dx.doi.org/10.1007/BF02183736
http://dx.doi.org/10.1103/PhysRevE.64.026109
http://dx.doi.org/10.1021/jp045546c
http://dx.doi.org/10.1021/jp0455430
http://dx.doi.org/10.1063/1.2013256
http://dx.doi.org/10.1016/j.cplett.2005.07.084
http://dx.doi.org/10.1063/1.2212942
http://dx.doi.org/10.1063/1.2212942
http://dx.doi.org/10.1073/pnas.0705830104
http://dx.doi.org/10.1073/pnas.0705830104
http://dx.doi.org/10.1007/s10910-008-90376-5
http://dx.doi.org/10.1021/jp0777059
http://dx.doi.org/10.1088/0022-3719/5/15/006
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1103/PhysRevLett.93.068303
http://dx.doi.org/10.1016/j.cpc.2005.03.017
http://dx.doi.org/10.1063/1.1562614
http://dx.doi.org/10.1063/1.1644537
http://dx.doi.org/10.1063/1.1738640
http://dx.doi.org/10.1063/1.2161211
http://dx.doi.org/10.1063/1.2716389
http://dx.doi.org/10.1063/1.2234477
http://dx.doi.org/10.1063/1.2748396
http://dx.doi.org/10.1073/pnas.0708058105

