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Abstract
Regulatory networks in cells can comprise a variety of types of molecular interactions. The most
basic are pairwise interactions, in which one species controls the behavior of another (for example,
a transcription factor activates or represses a gene). Higher-order interactions, while more subtle,
can be important for determining the function of networks. Here, we systematically expand a
simple master equation model for a gene to derive an approach for robustly assessing the
cooperativity (effective copy number) with which a transcription factor acts. The essential idea is
that moments of a joint distribution of protein copy numbers determine the Hill coefficient of a
cis-regulatory input function (CRIF) without nonlinear fitting. We show that this method
prescribes a definition of cooperativity that is meaningful even in highly complex situations in
which the regulation does not conform to a simple Hill function. To illustrate the utility of the
method, we measure the cooperativity of the transcription factor CI in simulations of phage-λ and
show how the cooperativity accurately reflects the behavior of the system. We numerically assess
the effects of deviations from ideality, as well as possible sources of error. The relationship to
other definitions of cooperativity and issues for experimentally realizing the procedure are
discussed.

1. INTRODUCTION
The relationships between different species in a regulatory reaction network can assume
several layers of complexity. At the most basic, discerning the linking of species by
interactions yields an underlying network structure; determining the causal direction of each
interaction further informs how the network functions. Such pairwise information can be
determined statistically by Bayesian methods [1, 2] and related [3] analyses; other statistical
methods have also been applied to this end [4]. However, more complex interactions
between species can exist. For example, it may be that several copies of the species A must
act together to promote the production of B. This cooperativity can have important
implications for the behavior of a network at different concentrations of species A: at high
cooperativity, there is a sharp threshold for production of B, whereas at low cooperativity
the production of B scales more gradually with A. Thus, knowledge of the cooperativity is
important for quantitatively modeling and, more generally, assessing a network's function;
for example, determining whether a system is bistable [5–8]. Gene regulatory networks
commonly involve cooperativity [9–13] and thus serve as good systems for investigating
means of estimating it.
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There is no one definition of cooperativity, and in each case the measurement method used
reflects the particular choice of definition. A common approach to measuring cooperativity
assumes a Hill function form of regulation [14] and performs a non-linear fit to the curve of
regulator versus product concentrations to obtain the Hill coefficient. This method requires a
large exploration of the range of the regulator concentrations to tease out the full shape of
the curve, which can be challenging for many systems. Additionally, complex systems may
not exhibit Hill-like regulation, and thus fits based on this form can be misleading.
Alternatively, Goldbeter and Koshland [15] define cooperativity from the ratio of regulator
concentrations required to give 90% and 10% of the maximal transcription activity.
Although their derivation begins with a Hill function for the form of theoretical regulation,
the definition of cooperativity is applicable to other forms of regulation. However, this
choice still requires exploration of a large range of regulator concentrations, as
determination of the upper and lower bounds of regulation is required. In this sense, it is a
global measure of cooperativity. It does not provide insight into the local degree of
sensitivity of regulation.

The above analyses of gene regulatory networks focus on relationships between average
expression rates and average concentrations of transcription factors. However, because
proteins in a cell are often present in relatively low abundance, stochastic fluctuations in the
copy numbers of molecules can have important effects on the dynamics of gene regulation
[16–20] and the analysis of the noise produced by such fluctuations has been the subject of
many recent advances in the analysis of regulatory networks [21–24]. Based on this fact, we
recently suggested that higher-order correlation functions of copy numbers can provide
model-free signatures of complex regulatory interactions. We specifically showed how to
elucidate combinatorial contributions to regulatory interactions involving two or more
transcription factors (whether they act sub- or super-additively) [25]. The approach is based
on analytically derived relationships between the moments of the distribution from an
expanded master equation [26] and the theoretical form of the combinatorial interaction,
which is encoded in the cis-regulatory input function [27]. In this paper we extend this
paradigm to define cooperativity in gene regulation. By systematically expanding a master
equation [26], we identify linear relationships between functions of measurable moments of
the steady-state distribution of protein copy numbers and the cooperativity manifested in
gene responses to changes in transcription factor levels. We illustrate the method by
applying it to simulation data of a number of different possible regulatory scenarios (e.g.,
oligomerization followed by DNA binding versus different copies of the transcription factor
binding independently to the DNA). These examples suggest that our approach can be used
to meaningfully quantify cooperativity even in complex situations.

Our definition, which again starts with a Hill function, is also suitable to a larger range of
regulation mechanisms. However, because our method uses the slope of a best-fit line to
determine cooperativity, the range of regulator concentration that needs to be sampled can
be much smaller. This also allows for the determination of cooperativity locally, reflecting
the natural behavior of the system. Unlike the previously mentioned methods, which
compare only average values, ours uses the intrinsic noise of the system to obtain a
covariance between regulator and product. While this makes our method more susceptible to
experimental noise, the increasing availability of high-throughput methods capable of
generating large amounts of data works to our advantage, as large data sets allow for better
statistics but do not imply a larger range of available regulator concentrations (required by
the other methods but not by ours). Comparisons of our method with those previously
discussed are performed, and it becomes apparent that the methods are not simply different
ways of measuring the same cooperativity, but actually reflect different definitions of the
same phenomenon. Issues in realizing our approach experimentally are discussed.
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2. METHODS
In this section we introduce a reaction scheme for cooperative gene expression and its
associated cis-regulatory input function (CRIF). The CRIF relates the rate of expression to
the transcription factor levels [28–30]. We then show how measurable moments of the
protein copy number distribution can be used to elucidate the Hill coefficient (exponent) that
quantifies the effective copy number with which the transcription factor acts. The notion of
cooperativity is generalized in Section 3.3.

2.1. Reaction scheme for cooperative gene expression
Here, we consider a single transcription factor, A, which must oligomerize to form an n-mer
to bind to the DNA and activate transcription of the gene for protein B:

(1)

Above, D is the gene, and R is the mRNA for B; arrows from and to Ø represent production
and degradation, respectively. In the following treatment of this network, we use rate
constants gX and kX for the production/binding and degradation/unbinding reactions (X is an
arbitrary species or bound complex), respectively. Additionally, we choose to write the rate
constant for the reaction R → B + R as gB/α, whereα is an arbitrary standard copy number
or concentration, such that gB is a zeroth order rate constant (the same order as gA).

Because binding and unbinding reactions are generally fast compared to transcription,
translation, and degradation, we can assume a quasi-steady-state in all intermediate species
[Ai (i > 1), AnD, and R] [31] and model the transcription of B as a single (effective) event.
We thus simplify the reaction network to

(2)

where f ≡ f(NA) is the CRIF (unitless) denoting the dependence of the rate of transcription
of B on the amount of A. In the quasi-steady-state limit of the reaction scheme in Eq. 1, the
CRIF takes the form

(3)

In this CRIF, the Hill coefficient n quantifies the cooperativity. NA is the copy number of

species A; , and KX = kX/gX; v = ND,tot/αKR, where ND,tot is the total
(bound and unbound) copy number of D.

2.2. Moments of the steady-state distrbution
Our goal is to relate the CRIF (f) and its derivatives to measurable moments of the steady-
state distribution. To this end, we need to account for the fluctuations that give rise to the
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distribution. Returning to the simplified reaction scheme presented in Eq. 2, we can describe
the dynamics by a master equation:

(4)

Here NX is again the copy number of species X, and ÊX is a step operator such that, for h an

arbitrary function of NX, ÊXh(NX) = h(NX +1) and . In Eq. 4, the terms
in the first set of square brackets on the right hand side represent production of species A
and B, and the terms in the second set of square brackets represent their degradation.

The parameter Ω in Eq. 4 is introduced as an arbitrary extensive variable, used to quantify
the size of the system. Its use reflects the choice of units in the rate constants, and we
include it to facilitate the expansion of the master equation following van Kampen [26].
Fluctuations are expected to scale as Ω1/2 [26, 32, 33], motivating the change from discrete
to continuous variables: NX = ΩϕX + Ω1/2ξX. Here, ϕX is the solution to the deterministic
rate equations and ξX measures instantaneous deviations, which we take to be equivalent to
the difference between the concentration of X in a single cell and its average over the
population. The resulting master equation, now as a function of ξA and ξB, contains the
CRIF as a function of the average concentration only [f(ϕA)]. Relatedly, there is a factor of
Ω difference between f(〈NA〉) and f(ϕA), which reflects the units of the rate constants in the
CRIF.

As discussed further below, for our purposes we need selected first and second moments of
the joint steady-state distribution of NA and NB. We obtain these by expanding the step
operator Ê and f in the master equation in powers of Ω–1/2, as detailed elsewhere [25, 26].
The first moments (means) are trivial:

(5)

From the deterministic rate equations (Eq. 2), we can further write ϕA = gA/kA and ϕB =
gBf(ϕA)/kB (yielding a relationship between ϕB and f). The variance of A and the covariance
of A and B (multiplied by a factor of Ω) are

(6)

Note that the second line of Eq. 6 is also the j = 1 case of Eq. 3 in our recent study on
combinatorial regulation in gene networks [25]. Substituting the variance of A into the
equation for the covariance, we obtain

(7)

which yields a relationship between 〈ξAξB〉 and ∂f/∂ϕA. The means and variance of A
computed above are exact from the expanded master equation, but the covariance is the first
term in a series in powers of Ω–1/2. For most experimental systems, this approximation is
expected to be a less significant source of error than (1) the system being not well described
by the quasi-steady-state approximation such that the form of the CRIF is incorrect, or (2)
∂f/∂ϕA being close to 0, as in the saturation limit or at low levels of A in cooperative
systems, so the covariance is difficult to estimate from available data.
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2.3. Hill coefficient
Our goal is to identify a linear expression for the Hill coefficient n. To isolate the n
dependence of the CRIF, we differentiate Eq. 3 (following the change of variables from NA
to ϕA) and divide the result by f2. Taking the logarithm of the ratio:

(8)

Substituting Eqs. 5 and 7, Eq. 8 becomes

(9)

where

(10)

Thus, by plotting  as a function of ln ϕA for constant C, one can obtain n from
the slope of the best fit line.

2.4. Extension to repression
It is relatively straightforward to derive an analogous expression for the case that A
represses the transcription of B. Schematically, this change requires replacing the reaction
for the production of R in Eq. 1 with

(11)

All other reactions are the same. In this case, the CRIF (following the change of variables to
ϕA) is

(12)

where v and  are the same as in Eq. 3. Proceeding as above,

(13)

or

(14)

The constant C is the same as in Eq. 10, but with a factor of  instead of . The
negative sign in the logarithm on the left hand side reflects the fact that ∂f/∂ϕA is
proportional to 〈ξAξB〉, which is negative when A is a repressor.
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2.5. Generating data
Eqs. 9 and 14 enable one to obtain the Hill coefficient n from the slope of the line that best

fits  as a function of ln ϕA. A sufficient number of measurements of

 as a function of ln ϕA are thus needed. Acquiring points along this line
requires modulating one or more of the rate constants, as altering only the initial
concentrations does not affect the steady state. Specifically, we should vary gA or kA if we
are viewing ln ϕA as the independent variable. Importantly, these (and other changes) to the
kinetic parameters must be made in such a way that the linear forms of Eqs. 9 and 14 are
preserved despite the dependence of the intercept C on these parameters (Eq. 10).

As a thought experiment, consider scaling both gA and gB by a factor  and ,

where  denotes the original value of gX. Since ϕA = gA/kA, we have ϕA ∝ s. This choice
leaves C independent of s because the numerator and denominator of Eq. 10 are scaled to the
same extent. Similar results are obtained by scaling both kA and kB by s (in which case ϕA ∝
1/s). From a more practical perspective, consider only scaling gA. Again ϕA ∝ s, but in this
case the intercept in Eq. 9 is proportional to s as well. Under these circumstances, the right
hand side of this equation can be rewritten as

(15)

where the Ci (i = 1, 2, 3) are again independent of s. In other words, we still expect a linear
relationship in a log-log plot, but scaling gA alone increases the slope by 1. Thus one can
vary only gA, but care is needed in interpreting the slope. Other possible scalings do not
result in linear log-log plots. Because we ultimately plot two observables (resulting from
averages and covariances) against each other, the precise value of the scaling factor s does
not need to be known in experiment. Note that because the only difference between the
activator and repressor constants C (in Eqs. 9 and 14) is the placement of  (in the
numerator or denominator), the above discussion of scaling methods applies equally to each
case. Potential experimental realizations of the various scalings are considered in Section 5.

3. NUMERICAL EXAMPLES
3.1. Systems with Hill-function regulation

To illustrate Eqs. 9 and 14, which make the quasi-steady state assumption, we used the
Gillespie algorithm [34] to simulate the idealized reaction network in Eq. 1, as well as its
analog for a repressor, for n = 1, 2, 3, and 4. The rate constants (prior to scaling) are given in
Table I. We scaled gA by s, for s = 0.5, 0.75, 1, 1.25, 1.5. Simulations were run for 106 time
units, printing a frame once every time unit. Plots of these simulations are shown in Fig. 1.

Statistical error was estimated using a bootstrap method [35]: 2000 replications of the
numerical data were generated by random sampling, with replacement, of the 106 frames,
omitting the first 2000 frames to ensure sampling from the steady-state distribution.
Averages and subsequent best-fit slopes were recomputed for each replication, and a
distribution of slopes was obtained. Ranges reported are for the two-tailed, 95% confidence
interval of the distribution. This procedure tends to underestimate the errors because it
assumes that the sampled distribution is a, good representation of the real distribution. Not
surprisingly, higher moments converge more slowly than lower ones, such that the errors are
primarily in the vertical dimension in Fig. 1. Slopes and confidence intervals are shown in
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Table. II; for completeness we also include results from simultaneously scaling either gA
and gB or kA and kB.

As expected, when A is an activator (repressor) and scaled by gA the best fit slope is close to
–n (n). These results can be compared with those obtained by nonlinearly fitting the average
expression of B as a function of ϕA (Fig. 2 and Table III). As an example, we use the
simulation data in Fig. 1A; fits were performed using the nonlinear least-squares Levenberg-
Marquardt algorithm [36]. The variables optimized are n, v and . We see that the results
are sensitive to the initial guesses for their values. Substituting the correct values for these
parameters results in a very good fit, but the fitting routine cannot reliably identify these
values starting from arbitrary ones. Specifically, for n = 1, the fit routine reliably returns the
same answer as the best-fit slope, but, as n increases, the ability of the nonlinear fitting
routine to pick out the right value of n worsens. Exhaustive exploration of integer values of
n is meaningful in this simple example, but not in the more complex cases considered in the
following sections.

In summary, our procedure yields much smaller uncertainties in n than does directly fitting
the CRIF. Moreover, our procedure requires exploration of fewer values and a smaller range
of ϕA, which could be experimentally advantageous since there are likely to be limits to how
much a species can be scaled in practice. For a best-fit line, one only needs two points in
principal, so long as there is a sufficient change in the independent variable that the slope of
the line is distinguishable from experimental or statistical noise. By contrast, non-linear
fitting would require sampling of a much broader range of the independent variable in order
to even observe the general shape of the curve.

3.2. Measurement uncertainty
We explore the effects of two sources of experimental uncertainty on measured
cooperativities separately: the presence of noise in data collection, and the number of data
points collected. These tests were performed on the scenario considered in Fig. 1A, in which
the action of an activator is probed by scaling its production. To mimic experimental noise,
uncorrelated Gaussian noise was added to the copy numbers of species A and B, with the
standard deviations of the noise set as percentages of the steady-state averages. For example,
a standard deviation of 5% would indicate that a species with an average copy number of
135 would have noise added with standard deviation 6.75 (and mean 0). To understand how
the error scaled with the size of the data set, L points (L < 106, the total length) were
randomly sampled from the simulations (after the first 2000 points were removed); in this
case, no Gaussian noise was added. Bootstrap estimations of the 95% confidence interval
were calculated as discussed above for each of the possible sources of error, and the
magnitude of the interval ranges are plotted in Fig. 3. As expected, the statistical error
increases with the magnitude of the noise and decreases with the extent of sampling (it
scales roughly as 1/√L). Naturally, noisier measurements and smaller data sets compound
each other, but there is no systematic deviation of the average.

3.3. Extension to independent binding
3.3.1. A generalized, single-species CRIF—The reaction scheme presented in Eq. 1 is
one possible molecular mechanism leading to cooperativity. An alternative is that n copies
of A each bind individually to the regulatory region of gene D, such that the intermediate
species are AiD, 1 ≤ i ≤ n, instead of Ai, 1 < i ≤ n, and AnD. In the case that copies of A bind
individually, it is also necessary to specify how different occupancies influence
transcription. For example, transcription could occur only when all n copies are present
(corresponding to an AND logic operation), or when any one transcription factor is bound
(an OR logic operation). Intuitively, the AND-like case may seem more like an actual
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cooperativity; however, both cases (and ones in between) can be considered within the same
framework. As we show, none of the idealized cases exactly manifests cooperativity equal to
the maximum number of copies of A that can bind, but we detail under which circumstances
the effective cooperativity approaches this maximum. Indeed, our analysis shows that the
manifested cooperativity is a truer reflection of the actual behavior of the system than the
maximum possible number of bound copies.

We can write the CRIF for an arbitrary single-transcription factor situation as:

(16)

Here, S is the set of transcriptionally active gene-regulator complexes, and T is the set of all
gene-regulator complexes, whether active or not. Both of these sets can contain the unbound
gene as well (i or j = 0 in the notation above). By definition, . For each term in both
sums, the power of ϕA represents the number of copies of A that have bound to the gene and
vi is the corresponding transcription rate in the numerator. For this general case, the
cooperativity can no longer be described by a single integer exponent. Nevertheless, we can
use our analysis to quantify cooperativity and obtain an effective Hill coefficient, neff.

The constant  is an extension of the definition given in Section 2: , where
Mi is the set of all intermediate species Xj leading up to the ith transcription factor bound to
the gene and KXj is again the ratio of degradation to production rate constants for Xj (we
define ). Essentially,  is a measure of the probability of forming the gene-regulator
species with i copies bound. Eq. 16 can be extended to an arbitrary number of regulators by
summing over all combinations and powers of each transcription factor.

3.3.2. Idealized independent binding cases—We now consider two idealized cases
explicitly: an activator that can act strictly in either an AND-like or an OR-like manner.
Clearly, the mode of regulation in a real system may be more complex and may not be
known, but these examples suffice for illustration. To obtain a CRIF for these cases, we
define S and T appropriately in Eq. 16. In all instances, because monomers of A bind to the
gene one at a time, we have a total of n + 1 gene-transcription factor species in the system
(D, AD, . . ., AnD). Thus T = {0, 1, . . . , n}. For the AND-like activator, the only
transcriptionally active species is AnD, so S = {n}. For the OR-like activator, all species are
active except for the unbound gene, so S = {1, 2, . . . , n}. In each case, the CRIF now
contains sums in the denominator and, for the OR-like activator, in the numerator. To
continue our analytical treatment, we assume that the binding rate for each copy of A is
unaffected by the number already bound, so KAiD = KAjD for any i and j, and

. This allows us to write each CRIF in closed form by geometric series
substitution and calculate ln (∂f/∂ϕA/f2) to obtain an equation similar to Eq. 8. It di ers in
that the constant  is replaced by a ϕA-dependent term. This term is complicated
but has a sigmoid form with respect to the ratio ϕA/KAD: it monotonically increases from 0
to n – 1 for the AND-like activator and decreases from n – 1 to 0 for the OR-like activator.

Thus, if we consider ϕA fixed but KAD variable, then in the limit of high KAD
(corresponding to weak binding to the gene) this sigmoid expression goes to zero for the
AND-like activator, the log-log plot in the analog equation becomes more linear, and the
effective cooperativity goes to the maximal number of binding sites. In the limit of strong
binding to the gene (small KAD), the sigmoid expression goes to n – 1 and the effective
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cooperativity goes to 1 regardless of the number of binding sites. Since the trend of the
sigmoid expression is opposite for the OR-like activator, the limits are opposite as well:
effective cooperativity is maximal at strong binding and minimal at weak binding. Fig. 4
shows these trends for 1, 2, 3, and 4 binding sites.

To understand these limits physically, consider the case of the AND-like activator with 4
binding sites. In the limit of strong binding, because there are many more transcription
factors in the system than available binding sites, most of the time all 4 sites will be filled
and transcription activated. Occasionally one transcription factor will dissociate from the
gene, and transcription will be deactivated. However, at this point it is much more likely that
the fourth site will be refilled than that another transcription factor will dissociate, so the
transition between active and inactive is decided by the fluctuation in a single transcription
factor. Thus, although there are four binding sites, the effective cooperativity is 1, as our
method reflects. Conversely, in the limit of weak binding, most of the time no binding sites
are filled, and transcription is inactive. In order for the transition for active to occur, four
transcription factors must bind, so the effective cooperativity is equal to the number of
binding sites, again as our method reflects. Similar reasoning can explain the trends in the
OR-like activator, as well as repressor cases.

The key element of this section is that the effective cooperativity may depend both on the
mode of regulation and the stability of the transcriptionally active gene-regulator species
relative to the inactive ones. Generally, a highly stable transcription factor-gene complex
will be relatively unaffected by fluctuations or scalings in the regulator, and effective
cooperativity will decrease. This fact can be used with other information to gain an
additional understanding of regulator dynamics. For example, if the mode of regulation is
known by some other means, a measurement of effective cooperativity will give the
researcher an idea of how strongly the regulator binds to the gene. Despite the fact that the
actual mode of regulation and the stabilities of these regulator-gene species will not be
known in most experiments, our method will return a meaningful effective cooperativity that
reflects the behavior of the system.

3.3.3. Comparison to an alternative measure of cooperativity—It is illuminating
to compare the effective cooperativities determined from the independent binding cases to
an alternative definition of cooperativity. Goldbeter and Koshland [15] define a response
sensitivity parameter Rs based on the ratio of regulator concentrations near the upper and
lower limits of activity and relate it to the Hill coefficient to obtain a relatively model-free
measure of cooperativity ns. While this method does not rely on non-linear fitting, it requires
a complete exploration of the range of ϕA to determine the limits of activity. Many
experimental systems may be difficult to scale to this degree, but for our idealized systems it
is easy to compute these parameters analytically. Unlike neff, ns is invariant to KAD because
scaling KAD up or down does not change the limits of the CRIF; such scaling is equivalent
to changing the units of ϕA. Of course, for neff if we restrict attention to a limited (absolute)
domain of ϕA then the cooperativity can appear to change with KAD (Fig. 4).

If we compute ns for the AND-like and OR-like activator independent binding systems
discussed above, we obtain the same values for both systems: (n, ns) = (2, 1.36), (3, 1.56),
(4, 1.69). Additionally, computation of ns for higher values of n in the independent binding
networks reveals that it is bounded above by 2. This restriction on the range of ns can be
intuited from comparisons of plots of the CRIFs for the oligomerization network with those
for the independent binding networks (Fig. 5). As n increases, the oligomerization CRIF
sharpens both before and after ϕA = KAD = 100 (Fig. 5A), whereas the independent binding
CRIFs only sharpen before (AND-like, Fig. 5B) or after (OR-like, Fig. 5C) this point. In the
independent binding case, each additional binding site has a diminishing effect on the
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cooperativity, measured by ns. This decrease is also the same for the idealized AND-like and
OR-like cases, resulting in equivalent cooperativities. Mathematically, the limit of 2 is a
consequence of the specific definition of Rs and can be seen by calculating it analytically for
the independent binding CRIFs (results not shown). Although this discussion has focused on
a comparison of our definition of cooperativity to that proposed by Goldbeter and Koshland,
it should be apparent that non-linear fitting to a Hill function is an inappropriate
representation of the form of regulation for the independent binding cases, as the CRIFs in
Fig. 5B and C are quite different from those in Fig. 5A.

4. APPLICATION TO A REALISTIC SYSTEM: PHAGE-λ
To test our definition of cooperativity on a non-idealized system, we consider the CI protein
in bacteriophage-λ. CI is responsible for stabilizing the lysogenic phase of phage-λ by
repressing lytic gene expression (notably Cro) [37]; this repression is caused by binding of
CI dimers to the first or second sites of the OR operator (OR1 or OR2), preventing activation
of the PR promoter by blocking RNA polymerase. This binding event is stabilized by the
binding of other CI dimers to adjacent OR sites (forming a CI tetramer) and by long-range
DNA looping between the OR and OL operators, facilitated by a CI octamer [37, 38]. The
result is a set of highly cooperative interactions between CI dimers for repression of PR. CI
also autoregulates, activating its transcription through PRM by binding to OR2 [39] or
repressing its transcription by binding to OR3 [37] (Fig. 6).

To simulate this system, we adapt a reaction network model recently introduced by Morelli
and co-workers [5] for phage-λ which includes DNA looping and transcription from both
PRM and PR (full model in their supplementary information). In this study, the authors
examined the effect of DNA looping and non-specific DNA binding on the robustness of the
bistability of phage-λ, which involves transitions between a CI-dominated (lysogenic) state
and a Cro-dominated (lytic) state. Because we are interested in measuring the cooperativity
of CI, and because the Cro and non-specific DNA binding reactions are numerically
expensive, we simulate the lysogenic state without Cro or non-specific DNA binding.
However, to measure the effect of CI regulation we add a non-interacting reporter protein B
that is transcribed with the kinetics of Cro, as might be accomplished by addition of a
plasmid. We simulate the system with and without loop formation (in simulations without
looping, only OR is simulated) to examine the effect of DNA looping on cooperativity. As
Morelli and co-workers note, the strength and dynamics of the loop formation in vivo are
not known; their study examines a range of ΔG values for looping, and we choose an
intermediate value for ours (–1.5 kcal/mol).

We choose to scale the degradation rate of the mRNA for CI (this is analogous to scaling the
rate constant for formation of CI, i.e. gA in the above examples). The value used for this rate
constant by Morelli and co-workers is 0.005776, and we scale it from 0.003 to 0.0095 in
increments of 0.0005. Simulations for this system were run for 107 seconds, printing a frame
every 10 s; the first 5000 frames are omitted from the averages, since the system takes
longer to converge to steady-state than the idealized systems. Due to the stability of the
lysogenic phase, the most frequent copy number of B is zero as instances where B is
transcribed are relatively rare, and the average copy number of B is very low (order of 10–3

to 10–1). Thus the covariance of CI and B is also quite small and slow to converge, and it is
not uncommon for simulations run for a finite amount of time to have a positive covariance,
which makes the logarithm undefined. In our analysis, these simulations were removed from
the best-fit line procedure, and the line was fit using the remaining data points. However, the
scaling procedure described for phage-λ creates 14 scalings (and corresponding data points
in the log-log plot), rather than the 5 used in the idealized simulations, to lessen the effect of
the elimination of one or two data points. Since CI is a repressor of B and we are scaling by
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gA alone, following the discussion in Section 2.5 we expect a positive slope that gives neff
(rather than neff – 1). Because different experimental methods might be able to measure only
the monomer CI, or only the dimer CI2, or only the sum of the two, we consider the
cooperativity of CI, CI2, and their sum (redefining ϕA in our analysis accordingly).

The results of these simulations are given in Table IV. CI in the non-looping system has an
effective cooperativity of 5.62. This is close to the maximal cooperativity, given the
mechanism of repression, as anywhere from 1 to 3 dimers (2 to 6 CI monomers) can act to
repress transcription of B. Although it only takes one CI dimer to repress transcription of B,
this effect is stabilized by the binding of another dimer to an adjacent site on OR, forming a
tetramer; this embodies an AND-like regulation. Because there are two ways for tetramers to
form on OR (binding to OR1 and OR2, or OR2 and OR3) and binding to either OR1 or OR2
represses PR; thus there is an OR-like feature to the regulation as well.

One might expect that the cooperativity would be larger when looping is added based on the
fact that then up to twelve copies of CI can be bound to the DNA. However, we find that the
cooperativity is the same or lower within our confidence interval (Table IV). In this case, the
explanation of the lower effective cooperativity is directly related to the discussion in
Section 3.3.2: the high stability of the loop means that loop formation is relatively
unresponsive to fluctuations or scaling in CI copy number. Because any loop structure
represses transcription of B, the effective cooperativity of CI is thus decreased. This
illustrates how our definition of cooperativity reflects the functional behavior of the system,
rather than the underlying structural properties.

The trend in the CI dimer cooperativities from non-looping to looping follow that of the
monomer, but are less than those for the monomers (2.12 and 1.68 less for the non-looping
and looping systems, respectively). This reflects the fact that the dimers are already a
cooperative interaction, so the remaining cooperativity to regulate transcription is less. The
cooperativity of the total free CI (sum of monomer and twice the dimer copy numbers) is
intermediate to the monomer and dimer cooperativities, but closer to the dimer value
because the average copy number of dimer is several times high than that for the monomer,
and fluctuations are larger and more long-lived in the dimer.

5. DISCUSSION
To understand the dynamics of a regulatory network, it is important to elucidate both the
overall structure of the network and the details of individual regulation events. From the
former we can ascertain the function of the network by determining what processes are
regulated by different species, and how those species in turn are regulated. From the latter,
we learn the specific mode of regulation in a single interaction, which can have important
consequences for the dynamics of the network. Cooperativity has been demonstrated to be
important in gene regulation [10, 13, 37, 40, 41] and signaling [6–8, 15]; this nonlinearity
can lead to bistability, among other consequences. If many regulators are required to work in
unison to activate or repress a reaction, the threshold between very low activity and very
high activity can be quite sharp, and this activity will propagate downstream through the
network. For systems with high cooperativity, if the regulator concentration is near the
threshold then small changes in concentration can greatly affect the larger function of the
network, but if the regulator concentration is far from the threshold then the network will be
relatively robust to changes in regulator concentration [8, 18, 20, 24]. Thus cooperativity can
have an important impact on the effect of noise in system dynamics.

Often, cooperativity is estimated by assuming a Hill form of regulation (as in Eq. 3) and
nonlinearly fitting the average expression to determine the exponent (Hill coefficient) [9,
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10]. Such an approach is sensitive to the initial guesses for the parameters and oversimplifies
the regulation in many cases. For example, as seen in Section 3.3, the cis-regulatory input
function can have multiple terms in both the numerator and the denominator. It is not
straightforward to non-linearly fit data in this more general case. Other methods that rely
more implicitly on the form of regulation, such as Rs from Goldbeter and Koshland [15],
still require a full exploration of the range of regulator concentrations. In contrast, we have
introduced a means of determining transcription factor cooperativity from a best-fit line.
This approach is relatively robust and does not require generating as many ϕA values, which
is likely to be of significant experimental advantage.

The analysis clarifies the distinction between effective cooperativity (from the slope that is
measured at an intermediate value of KAD, for example) and maximal cooperativity (the
largest exponent in the denominator of the CRIF). For any system, the measured
cooperativity neff is a reflection of the number of transcription factors being used
simultaneously in the system and typically will not be equal to n (the largest denominator
exponent) that appears in the CRIF. The phage-λ example characterizes this difference
particularly well: although DNA-looping necessarily involves more CI acting together, the
robustness of the loop means that the effective cooperativity (reflecting the transition of a
number of free CI to bound CI) decreases. The Rs parameter (which allows computation of a
cooperativity ns) discussed previously is also a general measure of the response sensitivity to
changes in ϕA. However, Rs is a global, rather than local, measure, as it relies on the
distance between the upper and lower limits of transcription and may ignore the effects of
steep regions of the CRIF. By contrast, due to the dependence of our neff on KAD for
independent binding systems, a potentially interesting experiment is also possible: in the
event that the ratio KAD is experimentally adjustable, a change in slope at different values
could be used to infer the presence of an independent binding, as opposed to an
oligomerization, mechanism.

Our analysis requires measurement of a steady-state distribution of protein copy numbers.
Deviations from the average behavior across a population can occur either due to the
stochastic nature of gene transcription, as individual molecular events occur discretely at
random times (intrinsic noise), or from variations in the global cellular state (extrinsic noise)
[16]. The latter could reflect differences in cell size, copy numbers of RNA polymerases and
ribosomes, or cell cycle stages, as well as variations in unobserved upstream regulators.
Because our purpose is to extract information from moments of the distribution that arise
from intrinsic noise, the ability to detect and control for extrinsic noise is important. For
example, variations in the number of RNA polymerases affect all protein concentrations
globally, which results in correlated fluctuations in copy numbers of species that are not
linked mechanistically. It has been shown that such external effects can systematically shift
the average behavior differently depending on the specific mode of regulation [24], and thus
extrinsic noise must be dealt with carefully.

The most direct means of estimating the relative contributions of intrinsic and extrinsic noise
is to distinguish and compare the outputs from two (or more) copies of a gene within a
single cell [16, 42]. Some specific factors contributing to extrinsic noise, such as variations
in cell size, can also be quantified easily; others can be inferred from amounts of molecular
species that are unrelated to the network of interest [25, 43]. Interestingly, it has been
suggested recently that intrinsic and extrinsic noise can be distinguished by analysis of the
time-dependence of either the divergence of daughter cells from the same mother cell [44]
or of the cross-correlation between a regulatory protein and its target [43]. In the latter, the
essential idea is that extrinsic noise affects all species simultaneously, so there is no lag,
whereas intrinsic noise requires some time to filter from a fluctuation in a regulator to a
fluctuation in its target [43]. Using such time-dependent techniques, it may be possible to
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separate extrinsic from intrinsic noise, or at least assess the relative magnitudes of each. The
degree to which intrinsic and extrinsic factors contribute to noise in gene expression remains
open to debate [42, 44], and it is likely to be system specific.

If one can detect and separate extrinsic and intrinsic noise, one can sort the data into bins
according to the relative levels of extrinsic noise in each cell and then compute the statistics
of interest separately for each bin. Indeed, the scaling procedure detailed in Section 2.5 is
essentially a version of controlled extrinsic noise: an external perturbation is introduced that
shifts the steady-state average. Of course, because there is extrinsic noise in a real system
one would have to ensure that external scaling factors did not significantly couple to existing
extrinsic noise; this would be most important to consider if the levels of upstream regulators
were significantly changed by the scaling. This consideration raises the possibility that one
could avoid perturbation altogether by exploiting naturally arising bistability (or, more
generally, multistability) within a system. To the extent that there was no significant
interconversion between subpopulations of cells expressing different amounts of the
regulator of interest, and the systematic changes in the output arose only from the changes in
the regulator, the needed moments for fitting a line could be calculated by treating each of
the the differentiated subpopulations as a separate ensemble of cells.

In the absence of such a situation, it is necessary to scale the production or degradation of
participating species artificially. How might such perturbations be implemented
experimentally? The production of the mRNA of a specific species can be controlled by an
inducible promoter or, in some cases by varying the copy number of the gene itself (e.g. by
varying the copy number of a plasmid); mRNA levels can also be modulated by direct
injection, addition of specific sequences affecting the stability, or by knockdown (e.g., by
RNA interference). The degradation rate of a species could be altered by introducing a
molecule that denatures, degrades, or otherwise regulates the protein, for example a targeted
ubiquitin-like protein [45, 46]. Other opportunities for scaling could exist for specific
systems. It is worth noting that any method used to determine cooperativity (including non-
linear fitting) would require some scaling technique to relate changes of ϕA to changes in
ϕB, and would be subject to the effects of extrinsic noise. The practical issues discussed are
not unique to our method.

The present study extends the emerging paradigm that statistically analyzing the propagation
of intrinsic noise through a network can yield useful information about regulatory structures
[21, 23, 25, 43]. In the simplest example, a stochastic upward fluctuation in the copy number
of an activating transcription factor increases the probability of transcription, and a positive
correlation is expected between the transcription factor and its target gene product. The
relations derived in this paper exploit combinations of additional moments (correlation
functions) for more complex inferences that can be hard to elucidate by other means. While
here we have focused on the steady-state, the analytical methods used to derive Eq. 9 can be
used to treat time-dependent systems as well. We believe that this would be a fruitful
direction for further study, and it would aid in the development of new approaches for
probing the dynamics of molecular systems [47].
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Figure 1.
Comparison of theory and simulation for cooperativity arising from oligomerization. Plots
of (A) Eqs. 9 and (B) 14 for an activator and a repressor, respectively, each scaled by gA for
n = 1, 2, 3, and 4 with best fit lines. Averages were computed after removing the first 2000
points from the trajectory, to ensure that sampling was performed on the steady-state
distribution. Averages are in units of copy number (i.e. ϕA = 〈NA〉) rather than concentration
as there is no explicit volume.
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Figure 2.
Conventional nonlinear fitting. Plot of ϕB versus ϕA for n = 1, 2, 3, and 4, for the simulations
of an activator scaled by gA only (so that changes in ϕB are solely due to changes in ϕA);
recall ϕB ∝ f(ϕA). Values of ϕB for a given n were normalized by the largest copy number
observed in any of the five simulations; averages for ϕA are in units of copy number.
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Figure 3.
Estimation of the effect of (A) measurement noise and (B) number of data points on the
determination of cooperativity from the confidence interval of best-fit slopes. In each case,
the first 2000 frames were removed to ensure that the simulation was around its steady-state.
See text for details.
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Figure 4.
Comparison of theory and simulation for cooperativity arising from independent binding.
Two modes of regulation by A are shown: (A) AND-like and (B) OR-like activator. Solid
lines are analytical calculations using the CRIF and points are numerical averages. In each
case, rate constants were the same as those in Table I and simulations were performed as
discussed previously with the following exceptions: the gAD value listed was used for all
binding events (and the kAD/gAD ratio was scaled for each point), and gR was divided by the
number of species contributing to R (1 for AND-activator, n for the OR-activator); the rate
constants for these reactions were equivalent. Scaling in all cases was by gA, and error bars
reflect a 95% confidence interval from the bootstrap.
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Figure 5.
Plots of the CRIFs for the oligomerization network (A), and independent binding networks
with AND-like activators (B) and OR-like activators (C); each has v = 1 and KAD = 100
(  for the oligomerization network). The repressor CRIFs are not shown, as frepressor
= 1 – factivator, so conclusions for the activator hold for the repressor. CRIFs are plotted for n
= 2, 8, and 15 to exaggerate the trends in line shape with increasing n. The oligomerization
case sharpens both before and after 100 with increasing n, but the independent binding
networks only sharpen on one side.
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Figure 6.
Schematic of the phage-λ operators OR and OL and promoters PR and PRM (A), and one
possible loop formation between the operators, facilitated by a CI octamer (B). Both OR and
OL have 3 binding sites for CI dimers; CI is transcribed from the PRM promoter, and the
reporter protein B from the PR promoter.
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TABLE I

Reaction rate constants for the idealized gene regulatory networks. Parameters were chosen such that
fluctuations in the copy number of intermediates were small, ensuring close adherence to the steady-state
approximation. In each case the total amount of gene species present (ND,dot) was 4.

Rate Constant Activator Repressor

gA 1 1

gB 1 1

kA 0.01 0.01

kB 0.01 1

g A2 0.0005 0.01

gAi (i > 2) 0.01 0.01

kAi 5 5

gAnD 0.01 2

kAnD 5 1

gR 10 10

kR 1 1
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TABLE II

Best-fit slopes for the plots in Fig. 1. Numbers in parentheses represent 95% confidence intervals from the
bootstrap method. Analytical calculations from Eq. 9 give slopes of –n and –(n + 1) for an activator and n and
n – 1 for a repressor.

Activator, scaled by

n gA gA and gB kA and kB

1 –0.99 (–1.00, –0.98) –1.98 (–1.98, –1.97) –2.04 (–2.05, –2.03)

2 –2.13 (–2.15, –2.11) –3.03 (–3.05, –3.01) –3.19 (–2.30, –3.17)

3 –3.07 (–3.11, –3.03) –4.04 (–4.08, –4.00) –4.20 (–4.23, –4.17)

4 –4.01 (–4.07, –3.92) –5.22 (–5.25, –5.06) –4.95 (–5.04, –4.87)

Repressor, scaled by

n gA gA and gB kA and kB

1 1.03 (0.98, 1.08) –0.02 (–0.08, 0.03) 0.00 (–0.06, 0.05)

2 1.63 (1.59, 1.67) 0.65 (0.62, 0.68) 0.69 (0.66, 0.73)

3 2.79 (2.77, 2.81) 1.78 (1.76, 1.80) 1.90 (1.88, 1.92)

4 4.04 (4.01, 4.07) 2.97 (2.94, 3.00) 3.23 (3.22, 3.25)
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TABLE III

Hill coefficients obtained from fitting  to the plots in Fig. 2 (unnormalized). Initial guess

sets were guessn = (v0, n0, Kn,0) = (1000, n, 100n), chosen as such because Kn should scale roughly on the
order of . Parameter values were determined by least squares fitting and the standard errors of the
asymptotic values are given (only values for n are shown).

initial guess set, fit 1 2 3 4

guess1, n = 1.00 ± 0.01 1.49 ± 2.02 1.34 ± 5.41 1.20 ± 8.13

guess2, n = 1.00 ± 0.01 1.57 ± 1.94 1.57 ± 4.31 1.56 ± 5.93

guess3, n = 1.00 ± 0.01 2.01 ± 0.05 2.39 ± 2.04 2.39 ± 3.83

guess4, n = 1.00 ± 0.01 2.01 ± 0.05 3.15 ± 0.20 3.24 ± 2.31
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TABLE IV

Cooperativities of CI and CI2 and their sum (computed as CI + 2CI2, as each dimer represents two monomers)
on the transcription of B for phage-λ, for non-looping and looping systems. Numbers in parenthesis represent
95% confidence intervals from the bootstrap method. In regards to the large confidence intervals, it should be
noted that simulations performed with higher transcription rates of B had better statistics but similar trends:
decreased effective cooperativity in the looping system (data not shown).

System type CI CI2 CI + 2CI2

Non-looping 5.62 (2.45, 6.57) 3.50 (1.81, 3.74) 3.66 (1.95, 3.89)

Looping 4.32 (2.64, 6.67) 2.64 (2.43, 2.85) 2.81 (2.59, 3.03)

IET Syst Biol. Author manuscript; available in PMC 2012 July 06.


