
Critical behavior of a model for catalyzed autoamplification
Martin Tchernookov, Aryeh Warmflash, and Aaron R. Dinner 

 
Citation: The Journal of Chemical Physics 130, 134906 (2009); doi: 10.1063/1.3101649 
View online: http://dx.doi.org/10.1063/1.3101649 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/130/13?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Absorbing states in a catalysis model with anti-Arrhenius behavior 
J. Chem. Phys. 136, 164502 (2012); 10.1063/1.4705361 
 
Dynamical critical exponents of a two-reaction model between monomers 
J. Chem. Phys. 118, 7610 (2003); 10.1063/1.1562619 
 
Study of a FirstOrder Irreversible Phase Transition in the YaldranKhan Catalyzed Reaction Model 
AIP Conf. Proc. 661, 266 (2003); 10.1063/1.1571341 
 
Critical Behavior of Binary Production ReactionDiffusion Systems 
AIP Conf. Proc. 661, 58 (2003); 10.1063/1.1571292 
 
Critical exponents of a two-reaction model between monomers 
J. Chem. Phys. 117, 331 (2002); 10.1063/1.1481762 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.42.160.178 On: Mon, 15 Sep 2014 19:25:51

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1120045031/x01/AIP-PT/COMSOL_JCPArticleDL_090314/COMSOL_Conf_BOS_1640x440.png/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Martin+Tchernookov&option1=author
http://scitation.aip.org/search?value1=Aryeh+Warmflash&option1=author
http://scitation.aip.org/search?value1=Aaron+R.+Dinner&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.3101649
http://scitation.aip.org/content/aip/journal/jcp/130/13?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/16/10.1063/1.4705361?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/118/16/10.1063/1.1562619?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1571341?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1571292?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/1/10.1063/1.1481762?ver=pdfcov


Critical behavior of a model for catalyzed autoamplification
Martin Tchernookov, Aryeh Warmflash, and Aaron R. Dinnera�
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We examine the critical behavior of a model of catalyzed autoamplification inspired by a common
motif in genetic networks. Similar to models in the directed percolation �DP� universality class, a
phase transition between an absorbing state with no copies of the autoamplifying species A and an
active state with a finite amount of A occurs at the point at which production and removal of A are
balanced. A suitable coordinate transformation shows that this model corresponds to one with three
fields, one of which relaxes exponentially, one of which displays critical behavior, and one of which
has purely diffusive dynamics but exerts an influence on the critical field. Using stochastic
simulations that account for discrete molecular copy numbers in one, two, and three dimensions, we
show that this model has exponents that are distinct from previously studied reaction-diffusion
systems, including the few with more than one field �unidirectionally coupled DP processes and the
diffusive epidemic process�. Thus the requirement of a catalyst changes the fundamental physics of
autoamplification. Estimates for the exponents of the diffusive epidemic process in two dimensions
are also presented. © 2009 American Institute of Physics. �DOI: 10.1063/1.3101649�

I. INTRODUCTION

Many systems far from equilibrium can be described by
reaction-diffusion models. Examples include molecular spe-
cies in a chemostat,1 morphogen gradients during the devel-
opment of multicellular organisms,2 neural systems,3 eco-
logical niches,4 populations experiencing epidemics,5 and
financial markets.6 Many such models exhibit a phase tran-
sition between an absorbing �or inactive� and a nonabsorbing
�or active� state. Analytical and numerical treatments that
account for stochastic fluctuations in such models indicate
that many belong to only a handful of classes, for each of
which the members conform to a set of universal scaling
relations.7–11 The most well-studied of such class is that di-
rected percolation �DP�.11–15

Here, we consider a model of catalyzed autoamplifica-
tion. In the model, a molecule A binds the catalyst D to form
a bound complex B that can either dissociate or create an-
other copy of A; molecules of A are destroyed at a constant
rate. Schematically,

A + D�
f

h

B→
g

B + A

�1�

A→
k

� ,

where f , g, h, and k are the rate constants for the indicated
reactions and A→� represents the loss of one copy of A.
One specific realization of this general scheme is a common
element of genetic circuits, a self-regulating gene. Namely, a
transcription factor �A� binds to the regulatory region of its
own gene �D for DNA� to activate further expression.

Qualitatively, as the net rate of producing the self-
amplifying factor exceeds that of removing it, the system

undergoes a phase transition, which is superficially similar to
that described above for models in the DP universality class.
While single-field models of this nature have been exhaus-
tively categorized �indeed, see Elgart and Kamenev16�, the
physics of systems with multiple coupled fields is much
more poorly understood. To the best of our knowledge, the
only previously studied models of the latter nature are suc-
cessive DP processes17 and the diffusive epidemic
process.5,18,19 Here, we exploit recent advances in simulating
the quasistationary state20 to show in one, two, and three
dimensions that the explicit treatment of the catalyst �or
gene� makes the physics of this model fundamentally differ-
ent. In the process, we explore numerical issues and obtain
for the first time estimates for the exponents of the diffusive
epidemic process in two dimensions. The relation of the
model to others studied previously is discussed.

II. MEAN-FIELD BEHAVIOR

Here, we use a mean-field treatment to introduce the
critical exponents used to describe the model. For math-
ematical simplicity, we take all the species to have the same
diffusion constant, D0, such that the macroscopic reaction-
diffusion equations are

�CA

�t
= D0�

2CA − hCACD + �f + g�CB − kCA �2�

�CD

�t
= D0�

2CD − hCACD + fCB �3�

�CB

�t
= D0�

2CB + hCACD − fCB. �4�

An important feature of these equations is that they conserve
the catalyst, ��CD+CB=constant.a�Electronic mail: dinner@uchicago.edu.
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In the absence of fluctuations, the system is spatially
homogeneous at steady state so the spatial derivative can be
set to zero. The concentration of A then satisfies

�CA

�t
= −

hk

g
CA�CA − g��/k� = 0, �5�

where ��=�− fk /gh. Equation �5� has two solutions: CA=0
and g�� /k. The former is stable for ���0, and the latter is
stable for ���0. Thus ��=0 represents a continuous phase
transition.

We characterize the system by a series of scaling laws.
That for how the order parameter CA varies with deviations
from the critical density is

CA � ���. �6�

From the discussion above, we immediately see that CA

��� in the mean-field and thus �=1 for ���0.
At criticality, we expect the average order parameter to

decay to zero as

CA � t−�. �7�

To find this exponent, we again consider the homogeneous
system and impose the conservation law CD+CB=�. Then
the system of equations can be written

ẋ = Jx + L�x� , �8�

where x= �CA ,CB�, L is a vector containing the nonlinear
terms, and J is the Jacobian of the system,

J =�− k −
fk

g
g + f

fk

g
− f � . �9�

Diagonalizing the Jacobian we find

ẋ� = Mx� + L��x�� , �10�

where x�=Uc
−1x, L� is the function L transformed to the new

variables, Uc is the matrix of eigenvectors of J, and M is a
diagonal matrix with entries equal to the eigenvalues of J,

M = �0 0

0 − f − k −
fk

g
� �11�

Uc = �g

k
−

g + f

f

1 1
� . �12�

We are interested in the decay of the component of x�
��x1� ,x2��, which corresponds to the zero mode of the Jaco-
bian. Explicitly,

x1� = fCA + �f + g�CB. �13�

Since M22�0, we do not need to consider x2� but can set it to
zero in the long time limit. Because x1� corresponds to the
zero mode of the Jacobian, its equation of motion has no
linear terms at criticality. Examining the higher order terms
contained in L� reveals that the lowest order term governing

the relaxation of x1� is the quadratic term. In other words, we
find that as t→�, ẋ1��x1�

2, which implies �=1.
At criticality, we expect the correlation length ���� and

time ��	� to become infinite, and the exponents 	� and 		 are
defined by

�� � 
��
−	� �14�

�	 � 
��
−		 . �15�

In order to determine 		 and 	�, we utilize the following
analysis. Since the concentrations decay to zero, the long-
time behavior of the system in the inactive regime is gov-
erned by the terms of the rate equations that are linear in the
concentrations. This linear term is zero exactly at criticality,
but has the coefficient �� slightly away from criticality.
Thus, the equation that determines the evolution of the criti-
cal mode of the system, x1�, close to criticality is given by

�x1�

�t
= D0�

2x1� − ����x1�. �16�

Since the correlation functions are only functions of differ-
ences between the two points considered, the solution to this
equation for the concentration of x1� with initial condition
x1��x ,0�=
�0� will give the correlation function G�x , t�
= �x1��x , t�x1��0,0��. The fundamental solution to this differen-
tial equation is easily obtained by Fourier transforming to
momentum-frequency space �we distinguish functions and
their Fourier transforms by their arguments�,

G��,p� =
 dxdtG�x,t�e−iwte−ix·p. �17�

We then find

G��,p� =
1

− i� + D0p2 + ��
. �18�

Going back to momentum-time coordinates, we have

G�t,p� =
 d�

2�

e−i�t

− i� + D0p2 + ��
= e−�D0p2+���t
�t� ,

�19�

where the integral was evaluated by closing the upper half-
plane if t�0 and the lower half-plane if t�0. To come back
to spatial coordinates, we need to evaluate the following:

G�t,x� =
 ddp

�2��de−ip·xe−�D0p2+���t

=
 ddp

�2��de−tD�p + ix/2D0t�2
e−x2/4D0t−��t

� e−x2/4D0t−��t. �20�

From here, we see that G�t ,0��e−t/�1/���, and so 		 =1. To
extract the dependence of the spatial correlation length on
the distance from criticality without considering time-
dependent effects, we set ����t=K where K is a constant.
Then,
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G�t,x� � e−x2/�4D0K/���, �21�

which gives us 	�=1 /2. In summary, the mean-field critical
exponents are �=1, 	�=1 /2, 		 =1, and �=1, which are
identical to the mean-field values for DP.

III. NUMERICAL RESULTS

Below a critical dimension, fluctuations that are corre-
lated in time and space can profoundly influence the collec-
tive behaviors of interest in such models, and it is important
to go beyond the mean field in analysis. Unfortunately, exact
and even approximate �renormalization group� methods that
account for stochastic effects can be challenging to apply to
all but the simplest such models. Although the total amount
of catalyst is conserved, the numbers of A, B, and D mol-
ecules can all vary at any given point in space. While a field
theoretic treatment of a reduced model is possible �M.T.,
A.W., and A.R.D., in preparation�, here we focus on a nu-
merical treatment of the full model. To this end, we first
describe the algorithm used in the simulations and then
present the results for the critical exponents.

A. Algorithm

All simulations were performed using a spatially explicit
version of the Gillespie algorithm21 in which reactions at
different sites were considered independent and diffusion
was modeled by hopping reactions between sites. At each
lattice site, a total of seven reactions were possible, the four
reactions which define the model of autoamplification �Eq.
�1��, and three different diffusion reactions, one for each spe-
cies. We label the reactions by the index j and the lattice site
by the index x. The propensity for each reaction to occur on
lattice site x is aj

�x�=kjRj
�x� where kj is the rate constant for

reaction j and Rj
�x� is the total number of combinations of

reactant species on site x. For example, for the reaction A
+D→B, Rj

�x�=nA
�x�nD

�x�. In each step, first a lattice site was
chosen with the probability of choosing each lattice site pro-
portional to the total propensity for a reaction to occur at that
site atot

�x�=� jaj
�x�. Then, a reaction was chosen from among the

seven possible reactions at that site, with the probability of
choosing reaction j proportional to aj

�x�. If a diffusion reac-
tion was chosen, a molecule was moved to a nearest neigh-
bor of the current lattice site chosen at random. We used
periodic boundary conditions and did not impose any limit
on the number of particles, which could occupy a given site.
After each reaction, the simulation time was advanced ac-
cording to �t=−�1 /atot�log r1 where atot=�xatot

�x� and r1 is a
random number chosen from a uniform distribution on the
interval 0�r1�1.

For our model on a finite lattice, the system must even-
tually access the absorbing state, so that in the stationary
state the system has zero copies of A with probability one.
Instead of considering the true stationary state, much more
can be learned from studying the quasistationary distribution,
which is the distribution conditioned on the system remain-
ing in the active phase.22 From simulations of the quasista-
tionary state, we calculated two quantities, the average value

of the order parameter and the average time for the system to
relax to the absorbing state. If we label configurations by the
index C, we define the latter quantity to be

ta = �
C

P�C��t�C → 0�� , �22�

where P�C� is the probability of observing configuration C in
the quasistationary state, 0 labels the absorbing state, and the
average is taken over many trajectories, which begin at con-
figuration C. At the critical point, the average density of A
particles and average time for the system to relax to the
absorbing state are expected to obey the power law
relations19

ta � Lz and �A� � L�/	�. �23�

The critical exponent z relates the spatial and temporal scal-
ing properties of the system and is given in terms of the
critical exponents discussed in Sec. II by z=		 /	�.

To determine �A� and ta, we ran long simulations. We
began each simulation by placing one D molecule on each
lattice site and a fixed number of A molecules at random
locations on the lattice such that the initial density of A was
0.1 molecules per lattice site. We then utilized the spatially
explicit version of the Gillespie algorithm described above to
evolve the system in time until it hit the absorbing state. To
reset the system from the absorbing state, we used the
method of de Oliveira and Dickman,20 which has been
shown to sample the quasistationary distribution and to pro-
vide accurate results for the critical behavior of other
reaction-diffusion models with an absorbing state.19 Namely,
as the simulation was running, we maintained a list of pre-
viously visited configurations. There was a fixed probability
per unit time to store a configuration to the list, so that if a
state was visited for time �t in the continuous time algo-
rithm, it had probability prep�t of being added to the list
where prep is a parameter fixed throughout the simulation.
When the simulation accessed the absorbing state, we reset it
to a randomly chosen configuration on the list. We stored a
total of Ns=1000 configurations and set prep=10−3 inverse
time units, where one time unit is equal to the inverse of the
rate of removal of A molecules �k−1�. We found that these
values ensured that the average time on the list �tL=Ns / prep

=106 time units� was significantly longer than the average
time to visit the absorbing state �ta� so that the system re-
tained a memory that extended further than the last visit to
the absorbing state. tL must also be chosen to be short
enough to allow the list to evolve or else fluctuations in the
composition of the list can cause the averages to be very
slow to converge. To ensure that the same configurations
were not chosen repeatedly before the list had been popu-
lated, we did not retrieve configurations from the list until it
was full. If the system accessed the absorbing state before
this time, we began from a new random configuration as at
the beginning of the simulation. We also did not begin re-
cording statistics for the calculations of �A� and ta until the
list was fully populated. The time to convergence varied de-
pending on the lattice size and dimension but was typically
of order 107 simulation time units, which corresponds to sev-
eral days of central processing unit �CPU� time.

134906-3 Model for catalyzed autoamplification J. Chem. Phys. 130, 134906 �2009�
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B. Critical exponents

Using the procedure described above, we performed
simulations in one, two, and three dimensions and calculated
the values of �A� and ta as functions of lattice size. In one
dimension, we used lattice sizes of 200, 500, 1000, and 1500,
in two dimensions we used 25�25, 50�50, 100�100, and
150�150, and in three dimensions we used 10�10�10,
15�15�15, and 20�20�20. We set the values of all other
parameters to one, varied the creation rate for A �g�, and
searched for the point where �A� and ta showed a power law
dependence on the lattice size. The results of this analysis in
two dimensions are shown in Fig. 1. In two and three dimen-
sions, we only observed scaling behavior for a small range of
values of g, which allowed us to accurately determine the
critical point to be at gc=1.098�3� and gc=1.020�2�, respec-
tively. In one dimension, we observed nearly linear behavior
over a wider range �gc=1.7�1��. Nonetheless, because the
slopes of all of the these lines were nearly the same, we were
able to obtain an estimate for the critical exponents.

These simulations only determine the ratios of exponents
� /	� and z=		 /	�. To find the value of �, we ran similar
simulations away from the critical point and calculated �A� in
each simulation. We used the same values of L as above and

fit the results to the function �A��L�=A��1−e−cL� to extrapo-
late to infinite lattice size. We then fit the dependence of A�

on g to the function A��g�=K�g−gc�� to determine the value
of �. The results for two dimensions are shown in Fig. 2 and
yield �=0.89�2�. A similar analysis in three dimensions
showed �=0.990�5� very close to the mean-field value. We
were unable to determine the value of � in one dimension
due to our inability to accurately locate the critical point.

Finally, we also directly calculated 	� directly using the
method suggested by Grassberger and Zhang.23 This method
relies on the observation that at criticality

�d ln�A�
dg

�
g=gc

� L1/	�, �24�

where the derivative is evaluated numerically as

�d ln�A�
dg

�
g=gc

=
1

2h
ln� �A��gc + h�

�A��gc − h�� . �25�

By observing the scaling behavior of this derivative, we di-
rectly determined the value of 	� in two and three dimen-
sions �Fig. 3�. Note that this computation together with the
determination of �, z, and � /	� above overdetermine the
exponents, which provides a check on the accuracy of our
computations. Directly calculating � /	� according to Eq.
�23� gave values of 0.79�5� and 1.45�10� in two and three
dimensions, respectively. Calculating these exponents sepa-
rately and dividing yielded 0.77 and 1.48, so the two numeri-
cal approaches give good agreement.

As an additional check on the accuracy of our methods,
we ran simulations of another model with a conserved quan-
tity, the diffusive epidemic process �DEP�, where the exact
results 	�=1 / �2−� /2� for �=4−d and z=2 in all spatial
dimensions are known from theory. This process consists of

-5

-4.5

-4

-3.5

-3

3 3.5 4 4.5 5

log
(<
A>
)

log(L)

5

6

7

8

9

10

3 3.5 4 4.5 5

log
(t a
)

log(L)

A

B

FIG. 1. �Color online� Determination of the exponents � /	� and z by analy-
sis of the scaling behavior for �a� ta and �b� �A�. Results shown are for d
=2; analogous results were obtained in d=3. Similar results were obtained
in d=1 except that scaling behavior was observed for a wider range of
values of g. Lines correspond to g=1.095 ���, g=1.097 �+�, g=1.099 ���,
and g=1.101 ���.

0.1

0.2

0.3

0.4

0.5

1.2 1.3 1.4 1.5

A

g

8

FIG. 2. Determination of the exponent � in two dimensions. Points show A�

as a function g determined from simulations. The line is a fit to the function
A�=K�g−gc��. gc was fixed to be at 1.098 and the fit gave �=0.89 and K
=1.04.
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the reactions A+B→
g

2A and B→
r

A.5,18 We set g=DA=DB

=1 and determined the critical point for these parameters to
be at rc=0.5465�10�. In two dimensions, we compute z
=1.94�10�, which agrees with the exact result to an extent
comparable to earlier calculations by Maia and Dickman19 in
one dimension. Direct computation of 	� according to Eq.
�24� yielded 	�=0.95�10�. We additionally find � /	�

=0.70�5� and �=0.76�5� for d=2, which yields 	�

=1.09�11�. Thus, both methods of calculating 	� agree with
the theoretical result 	�=1 to within simulation error. Hav-
ing validated the procedure, we summarize the values for all
the critical exponents determined in the catalyzed autoampli-
fication �CA� simulations in Table I; comparisons to results
for other models are provided in Tables II and III.

We also performed short simulations, which monitor the
evolution of the system beginning with a single molecule at
the center of the lattice as proposed by Grassberger and
Delatorre,24 but we found that these simulations gave values
of the critical exponents in disagreement with our steady-
state simulations. We attribute this to two sources of error in
the short-time simulations. First, there is an ambiguity in
choosing the initial configuration. In the case of a single
species model,24 the procedure for initializing the short time
simulations is straightforward. A single particle is placed in
the center of the lattice. However, in our multispecies model,
the situation is more complicated. In particular, although it is
clear that the simulations should begin with a single mol-
ecule of A at the center of the lattice, it is unclear how to
choose the initial configuration of the B and D molecules.

More importantly, as discussed below, our model can be seen
as a DP model with disorder in the rate of creation. Such
disorder is known to disrupt the universality of the short time
exponents so that they become parameter dependent and
break the connection between the short time and long time
scaling behavior, which is present in DP.25 Thus one cannot
probe the steady-state behavior of the model by examining
only its short-time behavior.

IV. DISCUSSION

We examined the critical behavior of a model of cata-
lyzed autoamplification. In this model, one species �A� binds
to a catalyst �D�, and the bound state �B� generates additional
copies of A. A key feature of the model is that the total
amount of catalyst �CB+CD� is conserved. A phase transition
is observed between an active state with finite amounts of A
and B and an inactive state with only D. A mean-field analy-
sis showed that the system can be characterized by a single
order parameter, which is a linear combination of CB and CA.
Numerical studies of the critical behavior of the discrete,
stochastic model in one, two, and three dimensions estab-
lished that the model exhibits scaling behavior but is not a
member of previously identified universality classes.

For our numerical investigations we utilized a method
for simulating the quasistationary state of a stochastic pro-
cess introduced by Dickman and co-workers.19,20 Even with
this enhanced sampling method, the results presented here
required several days of CPU time for each data point, and
would have been impossible to obtain with conventional
simulations. Our results show that this algorithm can be use-
fully employed in cases where the better known method
based on short-time simulations24 cannot be applied. It
would be interesting to compare the performance of the two
methods for a model in which both are applicable.

The phase transition we examined is one which occurs
between an active and an inactive phase at the point where
amplification �branching� and removal �annihilation� are bal-
anced. Most such models belong to the DP class, but some
with additional or different exponents from DP have also
been described. An example is the diffusive epidemic pro-
cess, in which there is a conserved quantity; above, we pro-
vided the first numeric evaluation of the exponents of that
model in two dimensions. Linear or quadratic coupling be-
tween DP processes also changes the critical exponents of
the downstream processes.17,26

It is interesting to speculate about the physics that un-
derlie the differences between the model examined here and
those in the DP class. It is possible to view the central phys-
ics of the model of CA as containing the two reactions: A
→2A and A→0” just as for DP. However, in the model ex-

TABLE I. Critical exponents for the model of catalyzed autoamplification.
The number in parenthesis indicates the uncertainty on the rightmost deci-
mal place�s�. Uncertainties were calculated by determining the values of the
exponents at either end of the range of values for which we observed critical
behavior.

� /	� z � 	�

1D 0.45�5� 1.25�5� ¯ ¯

2D 0.79�5� 1.67�12� 0.89�2� 1.15
3D 1.45�10� 1.67�15� 0.990�5� 0.67

TABLE II. The z critical exponent for the CA, DP �Ref. 10�, and DEP in one
�Ref. 19� and two dimensions.

CA DP DEP

1D 1.25�5� 1.580 745�10� 2.02�4�
2D 1.67�12� 1.76�3� 1.94�10�
3D 1.67�15� 1.90�1� ¯

2.5

3

3.5

4

3.5 4 4.5 5

log
(d
log
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A>
)/d
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log(L)

FIG. 3. Determination of the exponent 	� in two dimensions. The line is a
linear fit, which gives 	�

−1=0.87.
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amined here, the rate for the branching reaction is not a
constant but instead fluctuates in each lattice site according
to how much catalyst is currently present at that site. Thus,
the model is similar to a DP type model in which the rate for
branching fluctuates in space and time. At any given lattice
site, these fluctuations in the rate do not relax exponentially
but instead display a purely diffusive dynamics, which re-
sults from the fact that the total amount of catalyst is a con-
served quantity whose dynamics are not influenced by the
concentration of A.

Renormalization group �RG� analysis of a reduced
model suggests that the background field CB+CD becomes a
static Gaussian field without any correlation between neigh-
boring lattice sites in the limit of long times �M.T., A.W., and
A.R.D., in preparation�. This limit corresponds to spatially
quenched disorder, which has been investigated in other con-
texts. Such disorder has been shown to alter the critical be-
havior of models25 and in one case to destabilize the only RG
fixed point leading to a breakdown in critical scaling.27 In
our model, the disorder destabilizes the DP fixed point and
causes the RG flow to arrive at a different fixed point. Thus
critical scaling is still observed, but the values of the critical
exponents are different from DP. Spatially quenched disorder
has also been shown to cause the exponents governing clus-
ter formation starting from a single molecule to become pa-
rameter dependent,28 which could explain why short-time
simulation methods24 did not produce accurate results for our
model. It would be interesting to explore whether the effects
of disorder can be captured by systematically adding back-
ground species to reaction-diffusion systems.
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