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How noise statistics impact models of enzyme cycles
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Theoretical tools for adequately treating stochastic effects are important for understanding their role
in biological processes. Although master equations provide rigorous means for investigating effects
associated with fluctuations of discrete molecular copy numbers, they can be very challenging to
treat analytically and numerically. Approaches based on the Langevin approximation are often more
tractable, but care must be used to ensure that it is justified in each situation. Here, we examine a
model of an enzyme cycle for which noise qualitatively alters the behavior of the system:
fluctuations in the population of an enzyme can result in amplification and multistability in the
distribution of its product. We compare master equation and Langevin treatments of this system and
show that results derived previously with a white noise Langevin equation [M. Samoilov et al., Proc.
Natl. Acad. Sci. U.S.A. 102, 2310 (2005)] are inconsistent with the master equation. A colored noise
Langevin equation captures some, but not all, of the essential physics of the system. The advantages
and disadvantages of the Langevin approximation for modeling biological processes are

discussed. © 2008 American Institute of Physics. [DOI: 10.1063/1.2929841]

I. INTRODUCTION

Experiments that yield information about single cells
make clear that intrinsic noise in reactions involving low
copy numbers of molecules can have important biological
consequences.lf6 Among the phenomena thought to be influ-
enced by stochastic effects are reversible transitions made by
unicellular organisms between states that are competent and
noncompetent for uptake of DNA (Ref. 6) and processing of
nutrients* and the specification of and commitment to differ-
ent cell fates during development in multicellular
0rganisms.7’8 Quantitative analyses of fluctuations in molecu-
lar populations are important for understanding the funda-
mental bases of such phenomena. While such analyses often
assume the fluctuations of interest to be symmetrically dis-
tributed about a mean,l’z’%12 more complicated situations ex-
ist in which distributions of copy numbers become strongly
skewed or multimodal."*™" Care is needed to avoid artifacts
in theoretical descriptions of such situations.

Master equations are generally regarded as the most
well-founded means of specifying the evolution of the joint
probability of molecular copy numbers in biological systems
because discrete states can be incorporated in a straightfor-
ward fashion. In addition, the master equation directly speci-
fies the evolution of the probability distribution and no addi-
tional noise variables need to be introduced. However, few
master equations can be solved exactly;16 simulations can be
slow to converge (see Ref. 17 and references therein) and
often provide only limited physical insight. The relative ease
of analytical and numerical analysis of Langevin equations
makes them popular alternatives. Protein concentrations are
treated as continuous variables, and stochastic effects enter
through terms that depend on additional random variables
defined by their statistical properties. Commonly, it is as-
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sumed that the fluctuations are uncorrelated in time (“white”
noise),z’14 although models with finite correlation times
(“colored” noise) have also been investigated.]8 Langevin
models can also be categorized based on whether the noise
magnitude is independent or dependent on the values of the
dynamical variables (“additive” and “multiplicative” noise,
respectively). Although methods exist for systematically de-
riving Langevin equations from master equations,lgf21 in
most cases, phenomenological forms are employed without
formal justiﬁcation.z’14 As such, it is often difficult to deter-
mine whether the approximations involved in Langevin
approaches are valid.

Recently, it was observed in simulations of an enzyme
cycle comprised of competing chemical modification reac-
tions that small fluctuations in the copy number of the en-
zyme that catalyzed the forward reaction resulted in a posi-
tive shift in the mode of the distribution of the number of
product molecules; large fluctuations caused this distribution
to become bimodal."* Based on a Langevin equation with
multiplicative white noise, it was argued that fluctuations in
the forward enzyme population would always amplify the
population of products. Furthermore, the fact that the white
noise Langevin equation exhibited a bistability was taken as
evidence that the unimodal-to-bimodal transition observed in
the master equation simulations did not derive from the in-
terplay of fluctuations in enzyme copy numbers and the well-
known ultrasensitivity of such an enzyme cycle.zz’23 How-
ever, it is not clear that the phenomenological Langevin
equation employed by Samoilov et al™ adequately repre-
sents the discrete system of interest. Determining whether
this is the case is important given that the enzyme cycle is a
ubiquitous motif in biological networks and serves as a stan-
dard model for understanding nonlinear response in molecu-
lar systems.

Here, we systematically examine the behavior of the en-
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zyme cycle as described by master and Langevin equations.
In both cases, we vary the magnitude and correlation time of
the variations in the forward enzyme population to derive
“phase” diagrams. That for the master equation reveals that
multistability does, in fact, result from the interplay of fluc-
tuations in molecular copy numbers and the ultrasensitivity
of the cycle; in the monostable region, fluctuations can either
amplify or reduce the forward product depending on the spe-
cific choice of parameters. The Langevin phase diagram is
qualitatively different and exhibits two independent bifurca-
tions that can combine to give tristability in the product dis-
tribution. The differences between the behaviors of the mas-
ter equation and white noise Langevin equation studied
previouslyI4 derive from a breakdown of steady-state ap-
proximations employed in Michaelis—Menten kinetics in the
limit that the correlation time of the fluctuations in the en-
zyme population goes to zero. Expansions of the master
equation and general results for white-noise Langevin equa-
tions are discussed in Appendices. In addition to providing
insight into the behavior of this paradigmatic system, our
analysis illustrates the advantages and disadvantages of the
Langevin approach.

Il. ENZYME CYCLE
The enzyme cycle is comprised of the following reac-
tions:

kyp k+3
X+E,=XE,—— E .+ X",

k+2
ky ks
X*+E =XE —— E_+X, (1)
k_p

where E, and E_ are enzymes that catalyze conversion be-
tween substrates X and X* (below, we use these symbols to
denote the concentrations of these species as well). When the
concentrations of the enzymes are limiting, this system ex-
hibits ultrasensitivity in the deterministic representation.22
Namely, a small change in the ratio of the maximum forward
to backward reaction velocities can cause the steady-state
population to shift from X*=~0 to X* = X,=X+X*. Stochas-
tic fluctuations in the cycle reactions reduce the sensitivity
but do not shift the point at which the steady-state population
of X* becomes larger than that of X.2> On the other hand,
fluctuations in the total number of E, counterintuitively
move the location of the peak of the probability distribution
for X* and can even create additional peaks in its
distribution."

lll. LANGEVIN APPROACH

As mentioned in the Introduction, Langevin equations
can be systematically derived from master equations or phe-
nomenologically from physical considerations. Here, we
consider a previously introduced phenomenological Lange-
vin equation, which was used to make predictions about am-
plification and bistability for the enzyme cycle in the white-
noise case.'* Alternative Langevin equations derived
systematically are discussed in Appendix A.
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To derive their Langevin equation, Samoilov et al.™ be-
gan with the deterministic rate equations for the system and
relied on the assumption that the binding and unbinding re-
actions of enzyme and substrate are at local equilibrium. By
exploiting conservation of mass, these rate equations can be
combined into a single one,

dX*  kE(D(Xy-X") kEX*

___ = R 2
dt K, + X, - X* K_+X* @

where k. =k.3 and K. =(k++k-3)/k+ . They then assumed
that the dominant source of noise was in the concentration of
the forward enzyme,

E(1) = E. + 7(0), 3)

where 7(1) is a noise term discussed below in detail. Substi-
tution of Eq. (3) into Eq. (2) gives a Langevin equation of
the general form

ax® = AX*¥) + C(X*) 7(p), (4)
dr

where A(X*) is the right-hand-side of Eq. (2) with E,(¢) re-
placed with its average value and C(X¥) is the magnitude of
the multiplicative noise,

k+(X0 — X*)

C(X*) = .
) K, +X,— X*

(5)
This Langevin equation neglects other sources of noise such
as those in the cycle reactions themselves. This is expected
to be a valid assumption when the copy numbers of substrate
molecules are sufficiently large.

As mentioned above, Samoilov et al.* considered the
white-noise case in which, by definition, the statistics of 7(z)
are

(n(1)) =0,
and
(pO)n(t")y=Tdt-1"), (6)

where I' is a parameter that controls the magnitude of the
noise. In this case, the Langevin equation can be converted
to a Fokker—Planck equation for the probability distribution,
which can be solved exactly at steady state (Appendix B).
This analysis shows that noise shifts the peak in the
substrate-product distribution toward higher values of X*
relative to the deterministic fixed point.14 We derive a gen-
eral relation for multiplicative white noise Langevin equa-
tions in Appendix B that reveals that the physical basis for
this amplification is that the shift in the distribution of X* is
in the direction of decreasing noise. In other words, since the
noise magnitude C(X*) decreases as X* increases [Eq. (5)],
the system diffuses more slowly in X* at higher values of
that variable and thus spends more time at those points. To
the best of our knowledge, this physical mechanism was not
previously appreciated. As I" becomes large, a new stable
state is created such that the system is bistable in X*.'* Fur-
ther increases in the magnitude of the noise destabilize the
original deterministic stable state and the system is again
monostable.
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FIG. 1. Noise-induced phase diagram for the Langevin description of the
enzyme cycle. Regions of monostability (M), bistability (B), and tristability
(T) are denoted. At each combination of I" and 7, the number of phases was
determined from the number of maxima in the colored-noise probability
distribution, the exponential form in Eq. (3.12) of Ref. 18. The dashed line
marks the transition to multistability that results from the interplay of finite
noise correlation times and ultrasensitivity; the solid lines mark the transi-
tions present in the white-noise case. The parameters used were k,=k_

=10%, K,=K_=50, X,=2000, and E+=E,=30. All concentrations are in mol-
ecules per unit volume and time is in arbitrary dimensionless units.

The noise in the enzyme cycle physically represents the
fluctuations in the concentration of the forward enzyme,
which would have a finite lifetime in an actual system. To
account for this fact, one can introduce a separate white
noise Langevin equation for 7,

10 ), )

dt

where ¢ is a white noise with a mean of zero and a variance
of ', and 7 is a parameter that controls the correlation time
of the noise. Equivalently, one can directly change the statis-
tics of 7 such that it represents a colored noise of the
Ornstein—Uhlenbeck form:

(n(1))=0,

and
T )
(nOn(t')= 2—76‘("’ i, (8)

Equation (6) is recovered in the limit 7— 0.

To understand the interplay of the magnitude and the
correlation time of the noise on the enzyme cycle, we ex-
ploited an analytic solution (to first order in 7) for the steady-
state probability distribution of a colored noise multiplicative
Langevin equation18 to construct a phase diagram (Fig. 1).
This diagram shows that there are two ways bistability can
arise within the Langevin framework. One is that mentioned
previously in the white-noise case: the fluctuations are of
intermediate magnitude (discussed further in Appendix B).
The other is that the correlation time becomes long. In this
case, the bistability results from the ultrasensitive response
of the substrate distribution to fluctuations in the enzyme
concentration; the enzyme cycle forms a switch which is
flipped between two well separated substrate distributions.
Because the two means of generating bistability are distinct,
they can combine to yield a region of tristability (Fig. 1).

To determine if the tristability persisted at high 7, where
the analytic solution'® is no longer valid, we numerically
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FIG. 2. (Color) Numerical integration of Langevin equations at 7=1 and
I"'=300. (A) Probability of observing X* and E, at steady-state obtained by
integration of Egs. (2) and (7). Contours are spaced logarithmically by fac-
tors of 2. (B) Projected X* distribution. (C) Values of E, are mapped to their
deviation from the mean of E, for each X* value [red dashed line in (A)]. A
representative trajectory transitioning from high to low substrate concentra-
tions is shown (red dashed line). The same parameters as in Fig. 1 were used

except £_=99 and E,=100 to avoid the enzyme concentration crossing the
boundary at zero enzyme concentration.

integrated Eqs. (2) and (7) with an algorithm introduced by
Sancho et al.'® (Fig. 2). We scanned parameter combinations
50=<I'=1000 in increments of 50 for 7=1. Note that we
employed much larger values of I" than in the phase diagram
because the magnitude of the noise is I'/27 so that increasing
the value of 7 necessitated increasing the value of I" for the
noise to have a discernible effect on the process. Although
the system transitioned from monostability to bistability in
going from I'=50 to I'=100, no tristability was observed.
Since the distribution is bistable at large 7 [Fig. 2(b)], it is of
interest to examine the transition paths between the steady
states. We found that the system took different paths in the
forward and reverse directions, which is a common feature of
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FIG. 3. (Color) Stochastic amplification in the Langevin equation. Shown
are the deterministic steady-state solution for the concentration of substrate
(black dotted line) and concentration of substrate at the peak of the prob-
ability distribution for white noise (red solid line) and colored noise with
correlation times of 7=107> (green dotted-dashed line) and 7=10"* (blue
dashed line). Note that at 7=10"* the distribution has two peaks for some
values of E,. (Inset) Difference between the deterministic result and the
concentration of substrate at the peak(s) of the probability distributions. For
clarity, where there are two branches for the dashed curve, only the upper
branch in the main figure is shown. The same parameters as in Fig. 1 were
used with I'=0.5.

systems which do not obey detailed balance®® [Fig. 2(c)]. In
summary, at small values of 7, the Langevin equation has
two qualitatively different bistability transitions. At large 7,
only the bistability which results from the fact that fluctua-
tions in the enzyme concentration are sufficiently slow that
the substrate distribution can reach quasisteady states at high
and low values of E, persists. That which is present in the
white noise case is not seen in this regime.

Before turning to the master equation, we return to con-
sider the amplification of X* in the monostable portion of
Fig. 1 with small I". As noted above, in the white-noise case,
the peak in the distribution of substrate was always at a
greater concentration than the deterministic result (Fig. 3,
compared dotted and solid lines; inset, red solid line), which
is in agreement with the analytical results in Ref. 14 and in
Appendix B. As the correlation time increases, the transition
from the peak of the distribution at low substrate concentra-
tion to high concentration becomes sharper, and the noise
amplifies the signal only for high values of E, (Fig. 3, green

dotted-dashed lines). At low values of E+, the noise silences
the signal. In other words, the colored and white noises have
qualitatively different amplification properties. Consistent
with the results above, the distribution becomes bistable for
sufficiently large 7 (Fig. 3, blue dashed lines).

IV. MASTER EQUATION

The analysis above reveals that there are two means of
generating bistability in the Langevin framework: that acces-
sible in the white noise case, which was observed previously
for the enzyme cycle,14 and that obtained due to a rapid
response of the substrate-product distribution to slow fluc-
tuations in the enzyme population. To determine which, if
either, corresponds to the bistability observed in chemical
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master equation simulations,'* we sought to construct a
phase diagram for the enzyme cycle in the master equation
representation.

To vary the rate and size of the fluctuations of the en-
zyme copy number in a controlled fashion, we exploited a set
of auxiliary reactions that is conceptually simpler than that
used by Samoilov et al."* The more complex auxiliary reac-
tion scheme used in that study is capable of generating bi-
stability even when coupled to a simple isomerization reac-
tion due to a phenomenon in which the transient depletion of
a species leads to an effective reduction in network
topology.25 Since we were interested in the properties of the
enzyme cycle, we created the fluctuations in enzyme copy
number using a simple genetic process which can be treated
analytically in isolation.”* Namely, we modeled production
of the forward enzyme through the reactions:

gm ky

%) M %)

8E
M— M+E,

kg

E,—— D. (9)

Here, @ denotes loss of one copy of a molecule and M
denotes the mRNA used to produce the protein E, such that
the first reaction physically represents transcription and
mRNA degradation, the second reaction represents transla-
tion, and the third reaction represents protein degradation.
For this set of reactions, the relative variance in the concen-
tration of E, was shown to be” 2%

(SEDKE, =1+ gpl(kp+ky) = 1+ b/(1 + kglky),  (10)

where b=gg/ky, is the average number of proteins produced
per mRNA molecule (the “burst size”). Equation (10) indi-
cates that the burst size can be changed by scaling gg. It can
further be shown that the relaxation time of £, depends only
on the degradation rates k; and ky (Ref. 26) such that the
correlation time of the noise of interest in the cycle can be
varied independently by scaling the rates of all the auxiliary
reactions uniformly (in which case, the noise magnitude [Eq.
(10)] remains constant). Unless otherwise stated, we choose
the rate constants to be

gu=sb, ky=s/10, gp=>bs/10, kg=s/2. (11)

The scale factor s, which is defined by the above equations,
is inversely proportional to the correlation time so that the
correlation time and the burst size can be tuned indepen-
dently.

The resulting phase diagram for the enzyme cycle re-
sponse as a function of the magnitude (burst size in E,) and
correlation time (overall scale of the reaction rates) of the
noise is shown in Fig. 4. While the coexistence curve that
results from slow fluctuations of the enzyme population is
present (dashed in Fig. 1), the white noise limit (bottom of
Fig. 4) was found to be monostable over the entire range of
burst sizes studied (eight orders of magnitude; note that the
axes of the phase diagram are logarithmic), which suggests
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FIG. 4. Master equation phase diagram. A number in a square indicates the
number of peaks in the probability distribution determined by simulation
with the parameters taken at the lower left corner of the square. b is the burst
size for protein creation, which gives a measure of the noise magnitude (see
text) and s is a scale factor for all reaction rates in the enzyme creation
module so that s~! is proportional to the correlation time. Superscript letters
refer to the panels in Fig. 5 where probability distributions for the substrate
are shown for the parameters at these points in the phase diagram. The cycle
parameters were k;=k_; =200, k,=k_,=100, and k3=k_3=5000. The param-
eters for the driving reactions are given in terms of s and b by Eq. (11). Note
that in the multistable regime the exact number of distinct peaks is often
difficult to determine by simulation. The number in each box reflects the
number of peaks which were unambiguously distinct upon visually examin-
ing plots like those in Fig. 5.

that the Langevin model considered by Samoilov et al.™ is
qualitatively different from a discrete representation of the
enzyme cycle.

While both the master equation and the colored-noise
Langevin equation display a bistability, which results from
the response of the ultrasensitive switch to fluctuations in the
enzyme, the master equation also displays additional multi-
stabilities which result from discrete copy number effects. If
the fluctuations in the enzyme concentration are sufficiently
slow, each integral copy number of E, can give rise to a
separate peak in the steady-state distribution of X*, as can be
seen by sorting the data according to the total number of
enzyme molecules [Fig. 5(a)]. The physical reason for this
behavior is that, as the fluctuations in the copy number of the
enzyme become slow, the substrate-product distribution has
sufficient time to reach a new quasisteady state at each en-
zyme copy number. Ultrasensitivity can enhance such ef-
fects, but it is not a prerequisite for this type of stochastic
bistability. Indeed, such discrete copy number bistabilities
can be observed in simple models without any
ultrasensitivity.25 Thus, when fluctuations are slow, there are
discrete copy number peaks which result both from ultrasen-
sitivity and those which are independent of it. When the
fluctuations occur on intermediate time scales, only the bi-
stability which results from ultrasensitivity remains [Fig.
5(b)]. Finally, when the noise occurs on a much faster time
scale than the cycle reactions, the fluctuations are time aver-
aged by the cycle and the system is monostable [Fig. 5(c)],
as in the deterministic description. The idea that changes in
enzyme copy number can enable an ultrasensitive cycle to
fluctuate between well-separated steady states was first sug-
gested by Berg et al.” There are parallels to a protein that
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FIG. 5. (Color online) Master equation simulations. (A) Full probability
distributions (solid curve) and sorted distributions (dashed curves) corre-
sponding to enzyme copy numbers as indicated. Parameters are the same as
in Fig. 4 with s=1 and b=10. (B) Same parameters as in (A) except s
=100. (C) Same parameters as in (A) except s=10* The green curves in (B)
and (C) correspond to the same range of enzyme copy numbers as in (A). In
(C), the distributions of substrate concentrations for different enzyme copy
numbers are nearly identical.

represses its own expression, a discrete model of which can
be solved exactly,16 and to a stochastic model of a genetic
toggle switch without cooperative binding.28

The discussion above shows that certain features of the
behavior of the enzyme cycle can be obtained readily only
from a discrete model. Indeed, this is particularly true of the
dynamics when the burst size is large. In that case, the path
the system takes in transitioning from low to high substrate
concentration is drastically different from the path it
traverses in the opposite direction (Fig. 6). This can be un-
derstood as follows. When the burst size is large and the
correlation time is long, the production of a mRNA for E,
leads to a large burst of E,, which quickly exceeds the
threshold to flip the ultrasensitive switch. Once the switch is
flipped, the concentration of X* quickly rises in response
(Fig. 6, + symbols). The concentration of E, then decays
slowly and the concentration of X* remains nearly constant
as long as E, is above the switch threshold. Once the thresh-
old is crossed due to steady degradation, the levels of sub-
strate begin to drop and the cycle begins again (Fig. 6, X
symbols). Since the fluctuations which increase E, above the
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FIG. 6. (Color online) Transition paths in the master equation. One cycle
between the steady states is shown with the trajectory from low to high X*
denoted by + symbols and that from high to low denoted by X symbols.
The symbols are evenly spaced in time. The same parameters as in Fig. 4
were employed with s=b=1000.

threshold are fast while those which decrease E, below it are
slow compared to the reactions which form the enzyme
cycle, the system takes different paths through the phase
space in response to increases and decreases in the enzyme
concentration. Although the colored-noise Langevin equation
does exhibit a similar phenomenon at large 7, as evidenced
by the fact that it tends to transition from low to high sub-
strate concentrations above and below the average enzyme
concentration [see representative trajectory in Fig. 2(c)], it is
not nearly as dramatic as the master equation due to the fact
that it is hard to make a continuous variable model with
bursts without introducing additional nonlinearities by hand.

As a final comparison of the master and Langevin equa-
tions, we return to the shift in the peak of the probability
distribution in the monostable region. We saw that the white
noise always ampliﬁes,14 while at longer correlation times,
the colored noise amplifies for high values of E, and silences
for low values (Fig. 3). For the master equation simulations,
we compared the steady-state probability distribution ob-
tained with the system size above with that in a system with
the volume scaled by a factor of 10%. In the latter, stochastic
effects play little role. In agreement with the colored-noise
Langevin equation, the driving reaction for E, results in a

shift toward X* at sufficiently high values of E, [Fig. 7(a)]

and a shift toward X at low E, [Fig. 7(b)]. Putting all the
results together, the colored-noise Langevin equation cap-
tures master equation features that result from finite-time
fluctuations of the enzyme population but not those that de-
pend on discrete copy numbers.

V. CONCLUSIONS

We have constructed phase diagrams for noise induced
effects in an enzyme cycle represented by the Langevin and
master equations and investigated the behavior of these rep-
resentations in the different phases. A genetic module with
well-defined properties9’26 was instrumental for separately
varying the magnitude and correlation time of the noise in
the master equation case; a similar approach should be useful
in quantifying the response of other biochemical systems to
external fluctuations. We found that, while a colored-noise
Langevin equation did not capture effects associated with
discrete copy number fluctuations, it produced qualitatively
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FIG. 7. (Color online) Amplification in the master equation. Probability
distributions for the product of the cycle (X*) (solid curves) and the same
system scaled by a factor of 10* (dashed curves). The same cycle parameters
as in Fig. 4 were employed with (A) s=100 and b=1. (B) Same parameters
as (A) except g,,=20.

correct results regarding multistability and stochastic ampli-
fication. In contrast, the white-noise Langevin equation in-
troduced previously14 exhibited significant artifacts, and its
predictions were in qualitative disagreement with the more
accurate master equation treatment.

What is the source of these artifacts? Reducing the sys-
tem to a single Langevin equation requires assuming that the
enzyme-substrate binding is at equilibrium which enables the
equation to be brought to the Michaelis—Menten form. For
this assumption to be valid, the binding and unbinding of
enzyme to substrate should be the fastest process under con-
sideration. However, if the concentration of enzyme is as-
sumed to fluctuate with zero correlation time, these fluctua-
tions occur on a faster time scale for any finite rates for
binding and unbinding. Due to these fluctuations, no equilib-
rium in the binding reactions can be achieved. Thus, the
assumptions which lead to a single white-noise Langevin
equation are mutually inconsistent. This is in agreement with
standard deterministic treatments of the Michaelis—Menten
enzyme reaction” which show that the Michaelis-Menten
form is only valid if the concentration of substrate can be
considered to be constant over the length of time necessary
for the concentration of the enzyme-substrate complex to
reach equilibrium. Although such treatments do not explic-
itly consider fluctuations in the concentration of enzyme, the
same considerations should apply to the concentration of en-
zyme as to that of the substrate. When the concentration of
enzyme is assumed to fluctuate infinitely fast, this condition
is violated. The conclusion that making both the white-noise
and Michaelis—Menten assumptions together is the source of
the discrepancy is supported by the agreement between the
colored noise results and the master equation when 7 is suf-
ficiently large.
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Fluctuations occurring on a fast time scale are time av-
eraged by slower downstream processes and, therefore, it is
generally valid to ignore such fluctuations and replace the
fluctuating quantity by its average value. Indeed, the simula-
tions in Fig. 4 show that, in the master equation, fast fluc-
tuations have no effect on the number of stable states; the
system is always monostable in the white-noise limit. Why
then do infinitely fast fluctuations in the concentration of
enzyme impact the validity of the Michaelis—Menten as-
sumption in the present study? The artifacts in the case of the
Langevin equation considered above arise because the noise
is added in an ad hoc fashion after the Michaelis—Menten
assumption has already been made. In the case that fluctua-
tions in the enzyme population are infinitely fast, they can be
meaningfully neglected by treating the system deterministi-
cally, not with a white-noise Langevin equation. The quasi-
steady-state approximation can then hold for an average en-
zyme concentration which is small in comparison to the
initial substrate concentration.

One of the central open questions in the stochastic treat-
ment of biological systems is under what circumstances can
the accurate but cumbersome master equation treatment be
replaced with simpler treatments which are more amenable
to analytical analysis and less costly to simulate computa-
tionally. Our results show that care must be taken to avoid
artifacts in employing a Langevin treatment. For numerical
investigations, there are approximate methods for accelerat-
ing master equation simulations (reviewed in Ref. 30) or
numerically reducing the system to a Fokker—Planck
c:zquation.3 " One strategy to proceed analytically has been
suggested by Gillespie,20 and it enables one to write a Lange-
vin equation which is valid under well defined circumstances
directly from the master equation. In particular, there must
exist a time interval small enough that the propensities for
the reactions to occur can be considered constant, but large
enough that each reaction fires many times. This method is
not generally applicable to the enzyme cycle because, in the
ultrasensitive regime, executing even a few reactions is
enough to drastically change the propensities. A second
method is van Kampen’s systematic expansion of the master
equation in a small parameter, usually taken to be the inverse
volume of the system Q. If the system size is suffi-
ciently large that only the lowest order terms need be exam-
ined, the master equation can be replaced with a Fokker—
Planck equation which can be used to construct an equivalent
Langevin equation. The Kramers—Moyal expansion is a re-
lated expansion approach.lg"u’33 Because it does not involve
a small parameter, it can be difficult to determine whether
truncation of the expansion at a particular order is valid.

In Appendix A, we examine the results of applying these
expansion methods to the enzyme cycle. In both of these
methods, the noise in the enzyme concentration is never
transmitted to the substrate concentration as white noise and,
therefore, the artifacts discussed above are avoided. How-
ever, because the () expansion separates the solution into
deterministic and fluctuating portions, it is not suitable for
cases where the stochastic behavior can qualitatively alter the
system behavior, and the Langevin equation derived from
this expansion fails to reproduce the bistability seen in the
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master equation treatment. Furthermore, the lowest order of
the () expansion gives rise to linear Langevin equations
which do not show any amplification. However, we expect
that including higher order terms would enable one to calcu-
late the magnitude of the shift using this method. In contrast,
the lowest order of the Kramers—Moyal expansion gives very
similar results to the colored-noise Langevin equation stud-
ied above regarding both amplification and bistability.

More generally, under what circumstances can we expect
the stochastic description of a system to differ qualitatively
from the deterministic one? In this paper, we have shown
that, in the master equation description, the enzyme cycle
displays a noise-induced bifurcation which results from slow
fluctuations in enzyme concentration. However, this bifurca-
tion is not truly “deviant™* from the deterministic behavior
because it arises from the ultrasensitive response of the sub-
strate to changes in enzyme concentration which is present in
the deterministic description as well. In fact, this bistability
was predicted in an earlier study.23 In contrast, the Langevin
treatment shows an additional stochastic bifurcation which
would not have been predicted from examining the determin-
istic portion of the equation alone. In Appendix B, we dis-
cuss the necessary conditions for a Langevin equation to give
rise to such bifurcations. Novel behavior resulting from sto-
chastic fluctuations is not limited to phenomenological
Langevin descriptions but has also been demonstrated in
master equation treatments of simple models of an autore-
pressing gene and a signaling cascade which can be solved
exactly.ls’16 In the signaling case, the authors identify irre-
versibility, branching, and feedback as necessary conditions
for this stochastic transition. It will be interesting to see
whether there are other general mechanisms by which fluc-
tuations can give rise to behavior deviant from the determin-
istic description.
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APPENDIX A: SYSTEMATIC DERIVATION OF
LANGEVIN EQUATIONS FROM THE MASTER
EQUATION

To avoid artifacts which result from phenomenological
approaches, one can derive Langevin equations systemati-
cally from the master equation. Here we examine the results
of two common expansion methods: the () (Ref. 19) and the
Kramers—Moyal.lg’Sz’33 These expansion methods yield
Fokker—Planck equations from which equivalent Langevin
equations are easily obtained.

For simplicity, we make the Michaelis—Menten approxi-
mation and consider a master equation for only two species,
the substrate and the enzyme which converts the substrate
into the modified form. Although the Michaelis—Menten ap-
proximation introduced artifacts to the Langevin description
above, these are only present when an additional white-noise
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assumption is made. We expect the Michaelis—Menten ap-
proximation to be valid whenever the rates for binding and
unbinding of enzyme to substrate are significantly faster than
all other processes. Here, we assume that this condition is
satisfied and make no assumptions regarding the correlation
time of the noise. Instead, we allow the fluctuations in the
copy number of the forward enzyme to arise naturally from
the master equation. We assume that the amount of enzyme
for the reverse reaction is constant. We also restrict ourselves
to a simpler system for generating the fluctuations, that of a
simple birth-death process. Then, the reaction system con-
sists of four reactions

gf{X*)E+ 8E
X = X* and O—E,, (A1)
8. (XHE_ kg

where g/{X*) and g.(X*) are the nonlinear reaction rates
which result from making the following Michaelis—Menten
approximations:

N k+(X0_X*)

gAX*) = Ko+ (XX’ (A2a)
o kX

g/(X*) = Ty (A2b)

Then, the master equation describing the time evolution of
the system is given by

dP(X*E,)
% = (Qxt — g AX*)E,P(X*,E,)

+(Oxs = )8, (X E_P(X*,E,)
+g6(0f - DP(X*,E,)

+kg(Qp, - DE,P(X*,E,), (A3)

where Q, is a raising operator introduced for notational con-

venience. It is defined by QAf(A) =f(A+1) where f(A) is an
arbitrary function of A.

In the ) expansion, each variable is written as the sum
of deterministic and fluctuating terms. It is assumed the fluc-
tuating term is smaller than the deterministic term by a factor
of Q2. where ) is the system volume. Thus, we write

X* = Qs + Q2 & (A4)

where ¢y and &y are the deterministic and fluctuating terms
in X*, respectively. A systematic expansion is then performed
in the variable (2~!. To the lowest order, one need only retain
terms with Q2 or Q°. Setting the terms of order Q! to zero
yields an equation containing only the deterministic portion
of the variable concentrations. The terms of order Q° give a
linear Fokker—Planck equation which can then be used to
write equivalent Langevin equations for the fluctuating
terms. The results of performing this analysis are that ¢y«
and ¢ _satisfy the deterministic equations

dpys
—X = gf'(¢X*)¢E+ - g px)E_,

yr (A5a)
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S ¢ (A5b)
dr 8E~ KePE, >
and &y« and §E+ satisfy the Langevin equations
déys
T = gf(¢x*)§5+ + (1), (A6a)
déy,
o = kede, e ), (A6b)

where 7y« and g, are noise terms with zero average and

px(0) (")) = (g (xs) e, + 8 (bxx) E) St = 1),
(A7a)

(e, (07, (1)) = (g + Kby ) Na = ). (ATb)
Combining the deterministic and stochastic portions of these
equations yields Langevin equations for the variables X* and
E, similar to the Langevin equations studied above. Impor-
tantly, in these equations, the magnitude of the fluctuations
depends only on the value of the deterministic portion, not
on the current value of the fluctuating quantity. At steady
state, the magnitude of the fluctuations is constant. In addi-
tion, the coefficient of the term, which transmits the fluctua-
tions in the enzyme population to the substrate distribution
[the first term on the right hand side of Eq. (A6a)], is con-
stant in magnitude. These facts mean that no bistabilities will
be present in these Langevin equations. Although the artifi-
cial white-noise bistability is avoided, the separation be-
tween the deterministic portion of the variable, which dis-
plays ultrasensitivity and the fluctuating portion, prevents
one from examining the interaction between the fluctuations
and ultrasensitivity. In addition, as a result of the constant
noise magnitude, the peak of the probability distribution is
always at the deterministic solution. However, while bista-
bility cannot emerge at any order in the () expansion, ampli-
fication would at higher orders. We thus see that the ) ex-
pansion is useful for examining the quantitative properties of
fluctuations around an average value,”"** but it cannot yield
information about cases in which the fluctuations alter the
qualitative behavior of the system.

Applying the Kramers—Moyal expansion is procedurally
very similar to applying the () expansion. The main differ-
ence is that no small parameter is introduced so the number
of terms to include is arbitrary. However, because there is no
separation made between the stochastic and deterministic
portions of the equation, it is possible for this description to
capture effects not accessible to the () expansion. To obtain a
Fokker—Planck equation, we only retain terms with first and
second derivatives of the probability distribution. Transform-
ing this Fokker—Planck equation to a Langevin equation
yields

ax*

=" 8XF)E, = g (X*)E_+ (1), (A8a)
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dE,
dar 8e—kgE, + Mg, (A8D)
t
where the noise terms are given by
(x(0) (1)) = (AXT)E, + g, (X*)E) 8t = 1),  (A9a)
(7 (07 (1)) = (g + ke ) i = 1), (A9D)

Note that these equations are similar to what is obtained
from the () expansion except that the entire fluctuating vari-
able is present in the noise magnitudes rather than solely its
deterministic portion. If we assume the number of substrate
molecules is sufficiently large that 7y can be neglected, this
equation is nearly identical to the colored-noise equation
studied above. The only difference is that the magnitude of
the fluctuations in the enzyme concentration depends on the
current value of the enzyme concentration. Nonetheless,
since this dependence is relatively simple, we do not expect
that it will alter the qualitative behavior of the system, and
thus these equations should capture many of the qualitative
features of the master equation description. In summary,
while both systematic expansion methods provide a means
for deriving a Langevin equation which does not contain
artificial bistabilities, the () expansion is not suitable for
cases in which the fluctuations qualitatively alter the behav-
ior of the system. In contrast, the Kramers—Moyal expansion
produces a Langevin equation similar to the colored-noise
Langevin equation studied above.

APPENDIX B: GENERAL RESULTS FOR WHITE-
NOISE LANGEVIN SYSTEMS

In this section, we derive general results for amplifica-
tion and bistability in white-noise Langevin systems. In par-
ticular, we show that the peak of the probability distribution
is always shifted in the direction of decreasing noise magni-
tude and provide a general description of the white-noise
induced bifurcations of the type seen in the enzyme cycle.
The analysis here is more general than that in Ref. 14, in
which only the specific case of the enzyme cycle with white
noise was examined. As a result, we are able to obtain a
simple heuristic rule as to whether noise is amplifying or
silencing in a given system.

A Langevin equation of the form Eq. (4) arises whenever
the time derivative of one component of a system depends on
another variable that varies stochastically. We thus take Eq.
(4) with arbitrary smoothly varying functions A(g) and C(q)
as the starting point for our analysis here. In the Stratonovich
prescription, Eq. (4) with white noise is equivalent to the
Fokker—Planck equation for the probability distribution"

P 1 &
2 LGP+ BoP,
dq

Bl
ot 2 9g* (BD)

where P(q,t) is the probability distribution of ¢, G(g)
=A(q)+T'C'(q)C(q)/2, B(q)=T[C(g)]?, and primes denote
differentiation. The steady-state solution to Eq. (B1) is
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\\Alq)-B(q)/4
Alg)\. maximum
@ \\do+Aq minimurrll . |
8 | s,

FIG. 8. (Color online) Schematic of stochastic amplification and noise in-
duced bistability. Nonmonotonic A (shown) or B’ (not shown; the enzyme
cycle is an example) allows for the creation of additional extrema in the
probability distribution (labeled “minimum” and “maximum”) through a
Co
Py(q) = exp

noise-induced bifurcation.
q G(@
5 f (@ a7,
B(q) o B(@)

where C, is a normalization constant. From P((¢)=0, the

extrema of Py(q) satisfy the condition,”

Bg)
4

(B2)

Alg) - 0. (B3)
This equation shows how new noise-induced stable states
can be generated by white noise (Fig. 8). In cases where
A(g)=0 only has a single solution, nonmonotonic behavior
in either A(g) (depicted schematically in Fig. 8) or B(g) (the
case for the enzyme cycle), can give rise to new stable states.
That is, if either the deterministic derivative or the magni-
tude of the noise are nonmonotonic functions of the coordi-
nate g then new states can be stabilized by the noise.

To understand the amplification, we assume the ampli-
tude of the noise is small and expand A(g) and B'(g) in Eq.
(B3) to first order and solve for Ag=g—q,, where ¢ is the
fixed point of the deterministic equation of motion [A(g,)
=0]. The peak in the distribution of g shifts by

__ B'le@w) _ B'(q)
4A"(q0) - B"(q0)  4A'(q0)’

where the approximate equality comes from retaining only
terms to leading order in I'. Use of the Itd prescription19
results in an identical expression, except with a 2 in place of
the 4. Equation (B4) provides us with a simple means for
determining when (white) noise amplifies a signal.

To understand Eq. (B4), we examine the factors A’(q,)
and B’'(g,). For the fixed point g, to be stable, A(g) >0 for
all g<gq, and A(g) <0 for all ¢>g,. Consequently, A’(g)
<0, and the sign of Ag, in general, is opposite that of B'(gy).
The magnitude of the change in Ag depends on the determin-
istic restoring tendency: larger values of |A’(q,)| correspond
to smaller shifts in the peak of the probability distribution.
Now, consider the function B'(g,)= Fﬂq[C(q)]2|q=qO. [C(q)T?
monotonically increases with the amplitude of the noise by
definition, so the dependence of the amplitude of the noise
on ¢ determines the sign of B’. Specifically, B'(g) >0 when
the amplitude of the noise increases with ¢, and B'(g) <0
when it decreases. Because, as discussed above, A’(g,) <0,
the latter case corresponds to stochastic amplification. More
generally, this result shows that the shift is always opposite
in sign to B’(g,) and is therefore in the direction of decreas-
ing noise.

Ag

(B4)
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Although Eq. (B4) is premised on small fluctuations, the
reasoning above can be extended to show that Ag is opposite
in sign to B’(g) so long as B(g) is a monotonic function of ¢
and there is only a single deterministic fixed point. As sche-
matically shown in Fig. 8, for B(¢) monotonically decreasing
such that B'(g) <0 everywhere, A(g)—B’(q)/4>0 for all ¢
< g, [remember, A(g) >0 for g<gq,]. Thus, there can be no
extremum of the probability distribution in this range of q.
On the other hand, for ¢>g,, A(g) <0, and addition of a
positive number (—=B'/4) can result in solutions to Eq. (B3)
that represent stochastic amplification. In other words, the
peak in ¢ must be to the right of g,. By the same token,
additional peaks that arise in the steady-state distribution
must be at ¢ > g and thus correspond to Ag >0 as well (Fig.
8). Because the elementary steps of reaction networks are
often well-described by linear, Michaelis—Menten, and Hill
functions, which are monotonic in the concentrations of spe-
cies, we expect this reasoning to be generally applicable.

Finally, it is worth noting that in the case that the noise is
independent of the concentrations of participating species,
B’'=0, and the peak of the steady-state distribution is un-
changed. Fluctuations obeying standard signal-to-noise scal-
ing (C(q)~ Vg) give B’ ~ 1 for all values of ¢, so the noise
lowers the steady-state value of ¢.
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